scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Photoprotection and Other Responses of Plants to High Light Stress

01 Jan 1992-Vol. 43, Iss: 1, pp 599-626
TL;DR: The Xanthophyll cycle and thermal energy dissipation were investigated in this paper. But the results of these experiments were limited to the case of light-capturing systems, where active oxygen was not formed in the Photochemical Apparatus.
Abstract: PHOTO PROTECTION 604 Prevention oj Excessive Light Absorption... 604 Removal of Excess Excitation Energy Directly within the Light-Capturing System ......... ...... . . ..... ..... . .... . ..... ...... .... . .. . .. . . ..... . . . ... ... . 604 Removal oj Active Oxygen Formed in the Photochemical Apparatus ........ . . .. . . . . . . 605 INACTIV A TIONiTURNOVER OF PS II 606 THE XANTHOPHYLL CYCLE AND THERMAL ENERGY DISSIPATION: A PHOTOPROTECTIVE RESPONSE 608 Characteristics oj the Xanthophyll Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . 608 Association Among the De-epoxidized State oj the Xanthophyll Cycle, Thermal Energy Dissipation. and Photoprotection .. .. . . . .. . . ...... .. .. ... ... 609 Operation of the Xanthophyll Cycle in the Field . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .... . . . .. . . . . 611 CONCLUSIONS 618
Citations
More filters
Journal ArticleDOI
TL;DR: An introduction for the novice into the methodology and applications of chlorophyll fluorescence is provided and a selection of examples are used to illustrate the types of information that fluorescence can provide.
Abstract: typically written from a biophysicist’s or a molecular plant physiologist’s point of view (Horton and Bowyer, Chlorophyll fluorescence analysis has become one of 1990; Krause and Weis, 1991; Govindjee, 1995). The aim the most powerful and widely used techniques avail- of this review is to provide a simple, practical guide to able to plant physiologists and ecophysiologists. This chlorophyll fluorescence for those beginners who are review aims to provide an introduction for the novice interested in applying the technique in both field and into the methodology and applications of chlorophyll laboratory situations. Whilst the principles behind the fluorescence. After a brief introduction into the theor- measurements will be discussed briefly, the emphasis will etical background of the technique, the methodology be on the applications and limitations of this technique and some of the technical pitfalls that can be encoun- in plant ecophysiology. tered are explained. A selection of examples is then used to illustrate the types of information that fluorescence can provide. The basis of chlorophyll fluorescence measurements

7,721 citations

Journal ArticleDOI
TL;DR: Various protective mechanisms and an efficient repair cycle of Photosystem II allow plants to survive light stress and probably allows for coordinated biodegradation and biosynthesis of the D1 protein.

2,223 citations

Journal ArticleDOI
TL;DR: During normally-encountered degrees of water deficit the capacity of the antioxidant systems and their ability to respond to increased active oxygen generation may be sufficient to prevent overt expression of damage.
Abstract: Water deficits cause a reduction in the rate of photosynthesis. Exposure to mild water deficits, when relative water content (RWC) remains above 70%, primarily causes limitation to carbon dioxide uptake because of stomatal closure. With greater water deficits, direct inhibition of photosynthesis occurs. In both cases limitation of carbon dioxide fixation results in exposure of chloroplasts to excess excitation energy. Much of this can be dissipated by various photoprotective mechanisms. These include dissipation as heat via carotenoids, photorespiration, CAM idling and, in some species, leaf movements and other morphological features which minimize light absorption. The active oxygen species superoxide and singlet oxygen are produced in chloroplasts by photoreduction of Oxygen and energy transfer from triplet excited chlorophyll to oxygen, respectively. Hydrogen peroxide and hydroxyl radicals can form as a result of the reactions of superoxide. All these species are reactive and potentially damaging, causing lipid peroxidation and inactivation of enzymes. They are normally scavenged by a range of antioxidants and enzymes which are present in the chloroplast and other subcellular compartments. When carbon dioxide fixation is limited by water deficit, the rate of active oxygen formation increases in chloroplasts as excess excitation energy, not dissipated fay the photoprotective mechanisms, is used to form superoxide and singlet oxygen. However, photorespiratory hydrogen peroxide production in peroxisomes decreases. Increased superoxide can be detected by EPR (electron paramagnetic resonance) in chloroplasts from droughted plants. Stiperoxide formation leads to changes suggestive of oxidative damage including lipid peroxidation and a decrease in ascorbate. These changes are not, however, apparent until severe water deficits develop, and they could also be interpreted as secondary effects of water deficit-induced senescence or wounding. Non-lethal water deficits often result in increased activity of superoxide dismutase, glutathione reductase and monodehydroascorbate reductase. Increased capacity of these protective enzymes may be part of a general antioxidative response in plants involving regulation of protein synthesis or gene expression. Since the capacity of these enzymes is also increased by other treatments which cause oxidative damage, and which alter the balance between excitation energy input and carbon dioxide fixation such as low temperature and high irradiance, it is suggested that water deficit has the same effect. Light levels that are not normally excessive do become excessive and photoprotective/antioxidative systems are activated. Some of the photoprotective mechanisms themselves could result in active oxygen formation. Photoinhibitory damage also includes a component of oxidative damage. During normally-encountered degrees of water deficit the capacity of the antioxidant systems and their ability to respond to increased active oxygen generation may be sufficient to prevent overt expression of damage. Desiccation-tolerant tissues such as bryophytes, lichens, spores, seeds, some algae and a few vascular plant leaves can survive desiccation to below 30-40% RWC, A component of desiccation damage in seeds and bacteria is oxygen-dependent. Desiccation causes oxidation of glutathione, a major antioxidant, and appearance of a free radical signal detected by EPR in a number of tissues suggesting that oxidative damage has occurred. In photosynthetic cells damage may arise from photooxidation. Disruption of membrane-bound electron tranport systems in partially hydrated tissue could lead to reduction of oxygen to superoxide. Oxidation of lipids and sulphydryl groups may also occur in dry tissue. Tolerant cells recover upon rehydration and arc able to reduce their glutathione pool. Non-tolerant species go on to show further oxidative damage including lipid peroxidation. It is difficult to attribute this subsequent damage to the cause or effect of death. Embryos in seeds lose desiccation tolerance soon after imbibition. This is associated with membrane damage that has been attributed to superoxide-mediated deesterification of phospholipids and loss of lipophilic antioxidants. These effects are discussed in relation to other mechanisms involved in desiccation tolerance. Contents Summary 27 I. Introduction 28 II. Generation of active oxygen and defence mechanisms in plant cells 29 III. The effect of water deficit on photosynthesis 31 IV. Mechanisms for active oxygen generation during water deficit 36 V. Evidence for oxidative damage during water deficit 39 VI. Desiccation 47 VII. Conclusions 52 Acknowledgements 53 References 53.

2,008 citations

Journal ArticleDOI
01 Jun 1999
TL;DR: Several photoprotective mechanisms operating within chloroplasts of plants and green algae are summarized, especially with respect to thermal dissipation of excess absorbed light energy, alternative electron transport pathways, chloroplast antioxidant systems, and repair of photosystem II.
Abstract: The involvement of excited and highly reactive intermediates in oxygenic photosynthesis poses unique problems for algae and plants in terms of potential oxidative damage to the photosynthetic apparatus. Photoprotective processes prevent or minimize generation of oxidizing molecules, scavenge reactive oxygen species efficiently, and repair damage that inevitably occurs. This review summarizes several photoprotective mechanisms operating within chloroplasts of plants and green algae. The recent use of genetic and molecular biological approaches is providing new insights into photoprotection, especially with respect to thermal dissipation of excess absorbed light energy, alternative electron transport pathways, chloroplast antioxidant systems, and repair of photosystem II.

1,915 citations

Book
29 May 2006
TL;DR: Reynolds as discussed by the authors provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity.
Abstract: Communities of microscopic plant life, or phytoplankton, dominate the Earth's aquatic ecosystems. This important new book by Colin Reynolds covers the adaptations, physiology and population dynamics of phytoplankton communities in lakes and rivers and oceans. It provides basic information on composition, morphology and physiology of the main phyletic groups represented in marine and freshwater systems and in addition reviews recent advances in community ecology, developing an appreciation of assembly processes, co-existence and competition, disturbance and diversity. Although focussed on one group of organisms, the book develops many concepts relevant to ecology in the broadest sense, and as such will appeal to graduate students and researchers in ecology, limnology and oceanography.

1,856 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the quantum yield of non-cyclic electron transport was found to be directly proportional to the product of the photochemical fluorescence quenching (qQ) and the efficiency of excitation capture by open Photosystem II (PS II) reaction centres (Fv/Fm).

7,821 citations

Journal ArticleDOI
01 Apr 1987-Planta
TL;DR: Determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively.
Abstract: Photon yields of oxygen evolution at saturating CO2 were determined for 44 species of vascular plants, representing widely diverse taxa, habitats, life forms and growth conditions. The photonyield values on the basis of absorbed light (φa) were remarkably constant among plants possessing the same pathway of photosynthetic CO2 fixation, provided the plants had not been subjected to environmental stress. The mean φa value ±SE for 37 C3 species was 0.106±0.001 O2·photon-1. The five C4 species exhibited lower photon yields and greater variation than the C3 species (φa=0.0692±0.004). The φa values for the two Crassulaceanacid-metabolism species were similar to those of C3 species. Leaf chlorophyll content had little influence on φa over the range found in normal, healthy leaves. Chlorophyll fluorescence characteristics at 77 K were determined for the same leaves as used for the photon-yield measurements. Considerable variation in fluorescence emission both at 692 nm and at 734 nm, was found 1) among the different species; 2) between the upper and lower surfaces of the same leaves; and 3) between sun and shade leaves of the same species. By contrast, the ratio of variable to maximum fluorescence emission at 692 nm (Fv/FM, 692) remained remarkably constant (The mean value for the C3 species was 0.832±0.004). High-light treatments of shade leaves resulted in a reduction in both φa and the Fv/FM, 692 ratio. The extent of the reductions increased with time of exposure to bright light. A linear relationship was obtained when φa was plotted against Fv/FM, 692. The results show that determinations of the photon yield of O2 evolution and the Fv/FM, 692 ratio can serve as excellent quantitative measures of photoinhibition of overall photosynthetic energy-conversion system and of photochemistry of photosystem II, respectively. This is especially valuable in field work where it is often impossible to obtain appropriate controls.

2,287 citations

Journal ArticleDOI
TL;DR: Plant growth in diverse environments requires a similar balance of resources-energy, water, and mineral nutrients-to maintain optimal growth, but these resources differ by at least two orders of magnitude in the availability.
Abstract: M ost plants require a similar balance of resources-energy, water, and mineral nutrients-to maintain optimal growth. Natural environments, however, differ by at least two orders of magnitude in the availability of these resources. Light intensity varies 100fold from the canopy to the floor of a rainforest (Bj6rkman 1981); annual precipitation ranges 500-fold (105000 mm/yr) from deserts to tropical rainforests; and the amount of nitrogen available to plants varies from 0.09 g/m2 * yr in polar desert (Dowding et al. 1981) to 22.8 g/m2 * yr in a rich tropical rainforest (Vitousek 1984). Plants growing in these diverse environments maintain tissue concen-

1,215 citations

Journal ArticleDOI
01 Jun 1987-Planta
TL;DR: It is proposed that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves, one results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation in the pigment bed.
Abstract: High-light treatments (1750–2000 μmol photons m−2 · s−1) of leaves from a number of higher-plant species invariably resulted in quenching of the maximum 77K chlorophyll fluorescence at both 692 and 734 nm (FM, 692 and FM, 734). The response of instantaneous fluorescence at 692 nm (FO, 692) was complex. In leaves of some species FO, 692 increased dramatically in others it was quenched, and in others yet it showed no marked, consistent change. Regardless of the response of FO, 692 an apparently linear relationship was obtained between the ratio of variable to maximum fluorescence (FV/FM, 692) and the photon yield of O2 evolution, indicating that photoinhibition affects these two variables to approximately the same extent. Treatment of leaves in a CO2−free gas stream containing 2% O2 and 98% N2 under weak light (100 μmol · m−2 · s−1) resulted in a general and fully reversible quenching of 77K fluorescence at 692 and 734 nm. In this case both FO, 692 and FM, 692 were invariably quenched, indicating that the quenching was caused by an increased non-radiative energy dissipation in the pigment bed. We propose that high-light treatments can have at least two different, concurrent effects on 77K fluorescence in leaves. One results from damage to the photosystem II (PSII) reaction-center complex and leads to a rise in FO, 692; the other results from an increased non-radiative energy dissipation and leads to quenching of both FO, 692 and FM, 692 This general quenching had a much longer relaxation time than reported for ΔpH-dependent quenching in algae and chloroplasts. Sun leaves, whose FV/FM, 692 ratios were little affected by high-light exposure in normal air, suffered pronounced photoinhibition when the exposure was made under conditions that prevent photosynthetic gas exchange (2% O2, 0% CO2). However, they were still less susceptible than shade leaves, indicating that the higher capacity for energy dissipation via photosynthesis is not the only cause of their lower susceptibility. The rate constant for recovery from photoinhibition was much higher in mature sun leaves than in mature shade leaves, indicating that differences in the capacity for continuous repair may in part account for the difference in their susceptibility to photoinhibition.

755 citations

01 May 1987
TL;DR: Comparative studies of chlorophyll a fluorescence and of the pigment composition of leaves suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light.
Abstract: Comparative studies of chlorophyll a fluorescence, measured with a pulse amplitude modulated fluorometer, and of the pigment composition of leaves, suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light. This conclusion is based on the following findings: (a) exposure of leaves of Populus balsamifera, Hedera helix, and Monstera deliciosa to excess excitation energy (high light, air; weak light, 2% O/sub 2/, 0% CO/sub 2/) led to massive formation of zeaxanthin and a decrease in violaxanthin. (b) When exposed to photoinhibitory light levels in air, shade leaves of H. helix had a higher capacity for zeaxanthin formation, at the expense of ..beta..-carotene, than shade leaves of M. deliciosa. Changes in fluorescence characteristics suggested that, in H. helix, the predominant response to high light was an increase in the rate of nonradiative energy dissipation, whereas, in M. deliciosa, photoinhibitory damage to photosystem II reaction centers was the prevailing effect. (c) Exposure of a sun leaf of P. balsamifera to increasing photon flux densities in 2% O/sub 2/ and 0% CO/sub 2/ resulted initially in increasing levels of zeaxanthin (matched by decreases in violaxanthin) and was accompaniedmore » by fluorescence changes indicative of increased nonradiative energy dissipation. Above the light level at which no further increase in zeaxanthin content was observed, fluorescence characteristics indicated photoinhibitory damage. (d) A linear relationship was obtained between the ratio of variable to maximum fluorescence, F/sub V/F/sub M/, determined with the modulated fluorescence technique at room temperature, and the photon yield of O/sub 2/ evolution.« less

703 citations