scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Phylogeny and morphology of Phaeosphaeriopsis triseptata sp. nov. , and Phaeosphaeriopsis glaucopunctata

20 Aug 2014-Phytotaxa-Vol. 176, Iss: 1, pp 238-250
TL;DR: Seven species are accepted in the genus Phaeosphaeriopsis and a key to species is provided and a detailed description and illustration is provided for both species and the new taxon is compared with other PhaeOSphaeriosis species.
Abstract: A collection of the type species of Phaeosphaeriopsis , P. glaucopunctata , and a new species associated with leaf spots of Ruscus aculeatus were collected in Italy. Single ascospore isolates of both species were obtained and formed asexual morphs in culture. Combined ITS, LSU, SSU and RPB2 gene sequence analysis from taxa in Phaeosphaeriaceae showed that P. glaucopunctata and the new species cluster in Phaeosphaeriaceae, forming a separate clade from other species in the family. In this study, we designate our new collection of P. glaucopunctata as an epitype. The new Phaeosphaeriopsis species is morphologically similar to P. glaucopunctata , but has 3-septate ascospores. A detailed description and illustration is provided for both species and the new taxon is compared with other Phaeosphaeriopsis species. Phaeosphaeriopsis musae is excluded from Phaeosphaeriopsis based on morphology and multigene phylogenetic analysis and synonymized under Phaeosphaeria musae. In present study seven species are accepted in the genus Phaeosphaeriopsis and a key to species is provided.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
Nalin N. Wijayawardene, Kevin D. Hyde, Kunhiraman C. Rajeshkumar, David L. Hawksworth, Hugo Madrid, Paul M. Kirk, Uwe Braun, Rajshree V. Singh, Pedro W. Crous, Martin Kukwa, Robert Lücking, Cletus P. Kurtzman, Andrey Yurkov, Danny Haelewaters, André Aptroot, H. Thorsten Lumbsch, Einar Timdal, Damien Ertz, Javier Etayo, Alan J. L. Phillips, Johannes Z. Groenewald, Moslem Papizadeh, Laura Selbmann, Monika C. Dayarathne, Gothamie Weerakoon, E. B. Gareth Jones, Satinee Suetrong, Qing Tian, Rafael F. Castañeda-Ruiz, Ali H. Bahkali, Ka-Lai Pang, Kazuaki Tanaka, Dong-Qin Dai, Jariya Sakayaroj, Martina Hujslová, Lorenzo Lombard, Belle Damodara Shenoy, Ave Suija, Sajeewa S. N. Maharachchikumbura, Kasun M. Thambugala, Dhanushka N. Wanasinghe, Bharati O. Sharma, Subhash Gaikwad, Gargee Pandit, Laura Zucconi, Silvano Onofri, Eleonora Egidi, Huzefa A. Raja, Rampai Kodsueb, Marcela Eugenia da Silva Cáceres, Sergio Pérez-Ortega, Patrícia Oliveira Fiuza, Josiane Santana Monteiro, Larissa N. Vasilyeva, Roger G. Shivas, María Prieto, Mats Wedin, Ibai Olariaga, A. A. Lateef, Yamini Agrawal, Seyed Abolhassan Shahzadeh Fazeli, Mohammad Ali Amoozegar, Guo Zhu Zhao, Walter P. Pfliegler, Gunjan Sharma, Magdalena Oset, Mohamed A. Abdel-Wahab, Susumu Takamatsu, K. Bensch, Nimali I. de Silva, André De Kesel, Anuruddha Karunarathna, Saranyaphat Boonmee, Donald H. Pfister, Yong-Zhong Lu, Zong-Long Luo, Nattawut Boonyuen, Dinushani A. Daranagama, Indunil C. Senanayake, Subashini C. Jayasiri, Milan C. Samarakoon, Xiang-Yu Zeng, Mingkwan Doilom, Luis Quijada, Sillma Rampadarath, Gabriela Heredia, Asha J. Dissanayake, Ruvishika S. Jayawardana, Rekhani H. Perera, Li Zhou Tang, Chayanard Phukhamsakda, Margarita Hernández-Restrepo, Xiao-Ya Ma, Saowaluck Tibpromma, Luís Fernando Pascholati Gusmão, Darshani Weerahewa, Samantha C. Karunarathna 
TL;DR: This work is intended to provide the foundation for updating the ascomycete component of the “Without prejudice list of generic names of Fungi” published in 2013, which will be developed into a list of protected generic names.
Abstract: Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10–15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of ‘Ainsworth & Bisby’s Dictionary of the Fungi’ in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the “Without prejudice list of generic names of Fungi” published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell & Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. & De Not. (Art. 59).

243 citations

Journal ArticleDOI
Pedro W. Crous1, Pedro W. Crous2, Michael J. Wingfield2, David M. Richardson3, J.J. Le Roux3, Dominique Strasberg4, Jacqueline Edwards5, Francois Roets3, Vit Hubka6, Paul J. Taylor7, M. Heykoop8, María P. Martín9, Gabriel Moreno8, Deanna A. Sutton10, Nathan P. Wiederhold10, C. W. Barnes, J. R. Carlavilla8, Josepa Gené11, Alejandra Giraldo1, Alejandra Giraldo2, Vladimiro Guarnaccia1, Josep Guarro11, Margarita Hernández-Restrepo1, Margarita Hernández-Restrepo2, Miroslav Kolařík12, José Luis Manjón8, I.G. Pascoe5, E. S. Popov13, Marcelo Sandoval-Denis11, J.H.C. Woudenberg1, Krishnendu Acharya14, A. V. Alexandrova15, Pablo Alvarado, Renan do Nascimento Barbosa16, Iuri Goulart Baseia17, Robert A. Blanchette18, T. Boekhout2, Treena I. Burgess19, J. F. Cano-Lira11, Adéla Čmoková6, Roumen Dimitrov20, M. Yu. Dyakov15, Margarita Dueñas9, Arun Kumar Dutta14, Fernando Esteve-Raventós8, A. G. Fedosova13, Jacques Fournier, P. Gamboa21, D.E. Gouliamova22, Tine Grebenc, Marizeth Groenewald1, B. Hanse23, G.E.St.J. Hardy19, Benjamin W. Held18, Jurjević, Tharnrat Kaewgrajang24, K. P. D. Latha25, Lorenzo Lombard1, J. Jennifer Luangsa-ard26, Pavlina Lyskova, N. Mallatova, Patinjareveettil Manimohan25, Andrew N. Miller27, M. Mirabolfathy, O. V. Morozova13, Mary Obodai28, Neiva Tinti de Oliveira16, M.E. Ordoñez29, E. C. Otto18, S. Paloi3, S. Paloi1, Stephen W. Peterson30, Cherdchai Phosri31, Jolanda Roux2, W. A. Salazar29, A. Sánchez8, G. A. Sarria, Hyeon Dong Shin32, Bianca Denise Barbosa da Silva17, Gladstone Alves da Silva16, M.Th. Smith1, Cristina Maria de Souza-Motta, Alberto M. Stchigel11, Margarita Stoilova-Disheva22, Marcelo Aloisio Sulzbacher33, M.T. Telleria9, C. Toapanta29, J. M. Traba, N. Valenzuela-Lopez34, N. Valenzuela-Lopez11, Roy Watling, Johannes Z. Groenewald1 
TL;DR: Novel species of fungi described in the present study include the following from Australia: Vermiculariopsiella eucalypti, Mulderomyces natalis, Fusicladium paraamoenum, Neotrimmatostroma paraexcentricum, and Pseudophloeospora eUCalyptorum.
Abstract: Novel species of fungi described in the present study include the following from Australia: Vermiculariopsiella eucalypti, Mulderomyces natalis (incl. Mulderomyces gen. nov.), Fusicladium paraamoenum, Neotrimmatostroma paraexcentricum, and Pseudophloeospora eucalyptorum on leaves of Eucalyptus spp., Anungitea grevilleae (on leaves of Grevillea sp.), Pyrenochaeta acaciae (on leaves of Acacia sp.), and Brunneocarpos banksiae (incl. Brunneocarpos gen. nov.) on cones of Banksia attenuata. Novel foliicolous taxa from South Africa include Neosulcatispora strelitziae (on Strelitzia nicolai), Colletotrichum ledebouriae (on Ledebouria floridunda), Cylindrosympodioides brabejum (incl. Cylindrosympodioides gen. nov.) on Brabejum stellatifolium, Sclerostagonospora ericae (on Erica sp.), Setophoma cyperi (on Cyperus sphaerocephala), and Phaeosphaeria breonadiae (on Breonadia microcephala). Novelties described from Robben Island (South Africa) include Wojnowiciella cissampeli and Diaporthe cissampeli (both on Cissampelos capensis), Phaeotheca salicorniae (on Salicornia meyeriana), Paracylindrocarpon aloicola (incl. Paracylindrocarpon gen. nov.) on Aloe sp., and Libertasomyces myopori (incl. Libertasomyces gen. nov.) on Myoporum serratum. Several novelties are recorded from La Reunion (France), namely Phaeosphaeriopsis agapanthi (on Agapanthus sp.), Roussoella solani (on Solanum mauritianum), Vermiculariopsiella acaciae (on Acacia heterophylla), Dothiorella acacicola (on Acacia mearnsii), Chalara clidemiae (on Clidemia hirta), Cytospora tibouchinae (on Tibouchina semidecandra), Diaporthe ocoteae (on Ocotea obtusata), Castanediella eucalypticola, Phaeophleospora eucalypticola and Fusicladium eucalypticola (on Eucalyptus robusta), Lareunionomyces syzygii (incl. Lareunionomyces gen. nov.) and Parawiesneriomyces syzygii (incl. Parawiesneriomyces gen. nov.) on leaves of Syzygium jambos. Novel taxa from the USA include Meristemomyces arctostaphylos (on Arctostaphylos patula), Ochroconis dracaenae (on Dracaena reflexa), Rasamsonia columbiensis (air of a hotel conference room), Paecilomyces tabacinus (on Nicotiana tabacum), Toxicocladosporium hominis (from human broncoalveolar lavage fluid), Nothophoma macrospora (from respiratory secretion of a patient with pneumonia), and Penidiellopsis radicularis (incl. Penidiellopsis gen. nov.) from a human nail. Novel taxa described from Malaysia include Prosopidicola albizziae (on Albizzia falcataria), Proxipyricularia asari (on Asarum sp.), Diaporthe passifloricola (on Passiflora foetida), Paramycoleptodiscus albizziae (incl. Paramycoleptodiscus gen. nov.) on Albizzia falcataria, and Malaysiasca phaii (incl. Malaysiasca gen. nov.) on Phaius reflexipetalus. Two species are newly described from human patients in the Czech Republic, namely Microascus longicollis (from toenails of patient with suspected onychomycosis), and Chrysosporium echinulatum (from sole skin of patient). Furthermore, Alternaria quercicola is described on leaves of Quercus brantii (Iran), Stemphylium beticola on leaves of Beta vulgaris (The Netherlands), Scleroderma capeverdeanum on soil (Cape Verde Islands), Scleroderma dunensis on soil, and Blastobotrys meliponae from bee honey (Brazil), Ganoderma mbrekobenum on angiosperms (Ghana), Geoglossum raitviirii and Entoloma kruticianum on soil (Russia), Priceomyces vitoshaensis on Pterostichus melas (Carabidae) (Bulgaria) is the only one for which the family is listed, Ganoderma ecuadoriense on decaying wood (Ecuador), Thyrostroma cornicola on Cornus officinalis (Korea), Cercophora vinosa on decorticated branch of Salix sp. (France), Coprinus pinetorum, Coprinus littoralis and Xerocomellus poederi on soil (Spain). Two new genera from Colombia include Helminthosporiella and Uwemyces on leaves of Elaeis oleifera. Two species are described from India, namely Russula intervenosa (ectomycorrhizal with Shorea robusta), and Crinipellis odorata (on bark of Mytragyna parviflora). Novelties from Thailand include Cyphellophora gamsii (on leaf litter), Pisolithus aureosericeus and Corynascus citrinus (on soil). Two species are newly described from Citrus in Italy, namely Dendryphiella paravinosa on Citrus sinensis, and Ramularia citricola on Citrus floridana. Morphological and culture characteristics along with ITS nrDNA barcodes are provided for all taxa.

172 citations


Cites background from "Phylogeny and morphology of Phaeosp..."

  • ...The genus was recently revised by Thambugala et al. (2014), who accepted seven species....

    [...]

Journal ArticleDOI
Kevin D. Hyde, Yang Dong1, Rungtiwa Phookamsak, Rajesh Jeewon2, D. Jayarama Bhat, E. B. Gareth Jones3, E. B. Gareth Jones4, Ning-Guo Liu, Pranami D. Abeywickrama5, Ausana Mapook5, Ausana Mapook6, De-Ping Wei, Rekhani H. Perera5, Rekhani H. Perera7, Ishara S. Manawasinghe5, Dhandevi Pem5, Dhandevi Pem8, Digvijayini Bundhun5, Digvijayini Bundhun4, Anuruddha Karunarathna, Anusha H. Ekanayaka9, Anusha H. Ekanayaka5, Dan-Feng Bao10, Dan-Feng Bao5, Dan-Feng Bao4, Junfu Li, Milan C. Samarakoon, Napalai Chaiwan5, Napalai Chaiwan1, Chuan-Gen Lin5, Kunthida Phutthacharoen9, Kunthida Phutthacharoen5, Sheng-Nan Zhang5, Sheng-Nan Zhang4, Indunil C. Senanayake8, Ishani D. Goonasekara5, Kasun M. Thambugala11, Chayanard Phukhamsakda5, Danushka S. Tennakoon, Hong-Bo Jiang, Jing Yang, Ming Zeng, Naruemon Huanraluek5, Jian-Kui Liu12, Subodini N. Wijesinghe, Qing Tian5, Saowaluck Tibpromma13, Saowaluck Tibpromma14, Saowaluck Tibpromma9, Rashika S. Brahmanage5, Saranyaphat Boonmee5, Shi-Ke Huang, Vinodhini Thiyagaraja, Yong-Zhong Lu7, Ruvishika S. Jayawardena5, Wei Dong, Er-Fu Yang9, Er-Fu Yang13, Sanjay K. Singh15, Shiv Mohan Singh16, Shiwali Rana15, Sneha S. Lad15, Garima Anand17, B. Devadatha18, B. Devadatha5, M. Niranjan18, V. Venkateswara Sarma18, Kare Liimatainen19, Begoña Aguirre-Hudson19, Tuula Niskanen19, Andy Overall, Renato Lúcio Mendes Alvarenga20, Tatiana Baptista Gibertoni20, Walter P. Pfliegler21, Enikő Horváth21, Alexandra Imre21, Amanda Lucia Alves20, Ana Carla da Silva Santos20, Patricia Vieira Tiago20, Timur S. Bulgakov, Dhanushaka N. Wanasinghe9, Dhanushaka N. Wanasinghe13, Dhanushaka N. Wanasinghe14, Ali H. Bahkali3, Mingkwan Doilom13, Mingkwan Doilom9, Mingkwan Doilom14, Abdallah M. Elgorban3, Sajeewa S. N. Maharachchikumbura12, Kunhiraman C. Rajeshkumar15, Danny Haelewaters, Peter E. Mortimer9, Peter E. Mortimer13, Qi Zhao9, Saisamorn Lumyong22, Saisamorn Lumyong4, Jianchu Xu14, Jianchu Xu9, Jianchu Xu13, Jun Sheng1 
TL;DR: The present study describes two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports.
Abstract: Fungal diversity notes is one of the important journal series of fungal taxonomy that provide detailed descriptions and illustrations of new fungal taxa, as well as providing new information of fungal taxa worldwide. This article is the 11th contribution to the fungal diversity notes series, in which 126 taxa distributed in two phyla, six classes, 24 orders and 55 families are described and illustrated. Taxa in this study were mainly collected from Italy by Erio Camporesi and also collected from China, India and Thailand, as well as in some other European, North American and South American countries. Taxa described in the present study include two new families, 12 new genera, 82 new species, five new combinations and 25 new records on new hosts and new geographical distributions as well as sexual-asexual reports. The two new families are Eriomycetaceae (Dothideomycetes, family incertae sedis) and Fasciatisporaceae (Xylariales, Sordariomycetes). The twelve new genera comprise Bhagirathimyces (Phaeosphaeriaceae), Camporesiomyces (Tubeufiaceae), Eriocamporesia (Cryphonectriaceae), Eriomyces (Eriomycetaceae), Neomonodictys (Pleurotheciaceae), Paraloratospora (Phaeosphaeriaceae), Paramonodictys (Parabambusicolaceae), Pseudoconlarium (Diaporthomycetidae, genus incertae sedis), Pseudomurilentithecium (Lentitheciaceae), Setoapiospora (Muyocopronaceae), Srinivasanomyces (Vibrisseaceae) and Xenoanthostomella (Xylariales, genera incertae sedis). The 82 new species comprise Acremonium chiangraiense, Adustochaete nivea, Angustimassarina camporesii, Bhagirathimyces himalayensis, Brunneoclavispora camporesii, Camarosporidiella camporesii, Camporesiomyces mali, Camposporium appendiculatum, Camposporium multiseptatum, Camposporium septatum, Canalisporium aquaticium, Clonostachys eriocamporesiana, Clonostachys eriocamporesii, Colletotrichum hederiicola, Coniochaeta vineae, Conioscypha verrucosa, Cortinarius ainsworthii, Cortinarius aurae, Cortinarius britannicus, Cortinarius heatherae, Cortinarius scoticus, Cortinarius subsaniosus, Cytospora fusispora, Cytospora rosigena, Diaporthe camporesii, Diaporthe nigra, Diatrypella yunnanensis, Dictyosporium muriformis, Didymella camporesii, Diutina bernali, Diutina sipiczkii, Eriocamporesia aurantia, Eriomyces heveae, Ernakulamia tanakae, Falciformispora uttaraditensis, Fasciatispora cocoes, Foliophoma camporesii, Fuscostagonospora camporesii, Helvella subtinta, Kalmusia erioi, Keissleriella camporesiana, Keissleriella camporesii, Lanspora cylindrospora, Loratospora arezzoensis, Mariannaea atlantica, Melanographium phoenicis, Montagnula camporesii, Neodidymelliopsis camporesii, Neokalmusia kunmingensis, Neoleptosporella camporesiana, Neomonodictys muriformis, Neomyrmecridium guizhouense, Neosetophoma camporesii, Paraloratospora camporesii, Paramonodictys solitarius, Periconia palmicola, Plenodomus triseptatus, Pseudocamarosporium camporesii, Pseudocercospora maetaengensis, Pseudochaetosphaeronema kunmingense, Pseudoconlarium punctiforme, Pseudodactylaria camporesiana, Pseudomurilentithecium camporesii, Pseudotetraploa rajmachiensis, Pseudotruncatella camporesii, Rhexocercosporidium senecionis, Rhytidhysteron camporesii, Rhytidhysteron erioi, Septoriella camporesii, Setoapiospora thailandica, Srinivasanomyces kangrensis, Tetraploa dwibahubeeja, Tetraploa pseudoaristata, Tetraploa thrayabahubeeja, Torula camporesii, Tremateia camporesii, Tremateia lamiacearum, Uzbekistanica pruni, Verruconis mangrovei, Wilcoxina verruculosa, Xenoanthostomella chromolaenae and Xenodidymella camporesii. The five new combinations are Camporesiomyces patagoniensis, Camporesiomyces vaccinia, Camposporium lycopodiellae, Paraloratospora gahniae and Rhexocercosporidium microsporum. The 22 new records on host and geographical distribution comprise Arthrinium marii, Ascochyta medicaginicola, Ascochyta pisi, Astrocystis bambusicola, Camposporium pellucidum, Dendryphiella phitsanulokensis, Diaporthe foeniculina, Didymella macrostoma, Diplodia mutila, Diplodia seriata, Heterosphaeria patella, Hysterobrevium constrictum, Neodidymelliopsis ranunculi, Neovaginatispora fuckelii, Nothophoma quercina, Occultibambusa bambusae, Phaeosphaeria chinensis, Pseudopestalotiopsis theae, Pyxine berteriana, Tetraploa sasicola, Torula gaodangensis and Wojnowiciella dactylidis. In addition, the sexual morphs of Dissoconium eucalypti and Phaeosphaeriopsis pseudoagavacearum are reported from Laurus nobilis and Yucca gloriosa in Italy, respectively. The holomorph of Diaporthe cynaroidis is also reported for the first time.

139 citations

Journal ArticleDOI
TL;DR: This manuscript discusses epitypification and neotypification, describes how to epity pify or neotypify species and examines the importance of this process, and provides guidelines for epityPification.
Abstract: A review of phylogenetic studies carried out together with morphological ones shows that a major problem with most early studies is that they concentrated on techniques and used material or strains of fungi that in most cases were not carefully reference, and in a worrying number of cases wrongly named. Most classical species, particularly of microfungi, are not represented by adequate type material, or other authoritatively identified cultures or specimens, that can serve as DNA sources for phylogenetic study, or for developing robust identification systems. Natural classifications of fungi therefore suffer from the lack of reference strains in resultant phylogenetic trees. In some cases, epitypification and neotypification can solve this problem and these tools are increasingly used to resolve taxonomic confusion and stabilize the understanding of species, genera, families, or orders of fungi. This manuscript discusses epitypification and neotypification, describes how to epitypify or neotypify species and examines the importance of this process. A set of guidelines for epitypification is presented. Examples where taxa have been epitypified are presented and the benefits and problems of epitypification are discussed. As examples of epitypification, or to provide reference specimens, a new epitype is designated for Paraphaeosphaeria michotii and reference specimens are provided for Astrosphaeriella stellata, A. bakeriana, Phaeosphaeria elongata, Ophiobolus cirsii, and O. erythrosporus. In this way we demonstrate how to epitypify taxa and its importance, and also illustrate the value of proposing reference specimens if epitypification is not advisable. Although we provided guidelines for epitypification, the decision to epitypify or not lies with the author, who should have experience of the fungus concerned. This responsibility is to be taken seriously, as once a later typification is made, it may not be possible to undo that, particularly in the case of epitypes, without using the lengthy and tedious formal conservation and rejection processes.

131 citations


Cites background from "Phylogeny and morphology of Phaeosp..."

  • ...More recently, studies have been conducted that have resolved the taxonomic placement of taxa that could not previously be assigned to any family or order with certainty (Pratibha et al. 2014; Thambugala et al. 2014a; Suetrong et al. 2014)....

    [...]

  • ...This was justified as epitypification of P. glaucopunctata was necessary to resolve confusion with P. musae, and Thambugala et al. (2014b) synonymised P. musae under Phaeosphaeria musae based on morphological and phylogenetic data....

    [...]

  • ...Thambugala et al. (2014b) designated an epitype for P. glaucopunctata, and introduced a new species associated with leaf spots ofRuscus aculeatus collected in Italy to confirm the placement of the Phaeosphaeriopsis in Phaeosphaeriaceae....

    [...]

Journal ArticleDOI
TL;DR: Two new species of Phaeosphaeria and one of Phayosphaeriopsis are introduced while the asexual states of Phaiosphaeryopsis dracaenicola are reported, and ITS gene phylogenetic analysis indicates that Sphaerellopsis belongs to Leptoshaeriaceae.
Abstract: Phaeosphaeriaceae is a large and important family in the order Pleosporales which includes economically important plant pathogens. Species may also be endophytes or saprobes on plant hosts, especially on monocotyledons (e.g., Cannaceae, Cyperaceae, Juncaceae, Poaceae); some species have also been reported on dicotyledons. The family previously accommodated 35 sexual and asexual genera and comprised more than 300 species with a range of morphological characters. The morphological characters of taxa in this family are often ambiguous and can be confused with other taxa in Leptosphaeriaceae and Montagnulaceae. Fourteen specimens of the type genera of Phaeosphaeriaceae were loaned from herbaria worldwide and were re-examined and illustrated. Fresh collections were obtained from Italy and Thailand, characterized, examined, isolated into pure culture and used to obtain molecular data. The asexual state was induced where possible on sterile bamboo pieces placed on water agar. Multigene phylogenetic analyses of ITS, LSU, SSU, RPB2 and TEF1 sequence datasets were carried out using maximum likelihood, maximum parsimony and Bayesian analysis. Molecular analyses shows that 21 genera (Amarenomyces, Ampelomyces, Chaetosphaeronema, Dematiopleospora, Entodesmium, Loratospora, Neosetophoma, Neostagonospora, Nodulosphaeria, Ophiobolus, Ophiosphaerella, Paraphoma, Parastagonospora, Phaeosphaeria, Phaeosphaeriopsis, Sclerostagonospora, Setomelanomma, Setophoma, Vrystaatia, Wojnowicia and Xenoseptoria) belong in Phaeosphaeriaceae, while seven genera (Amarenographium, Bricookea, Dothideopsella, Eudarluca, Phaeostagonospora, Scolecosporiella and Tiarospora) are included based on morphological data. Amarenomyces is reinstated and Nodulosphaeria is confirmed in Phaeosphaeriaceae. Eudarluca is distinguished from Sphaerellopsis based on its morphological characters and is typical of Phaeosphaeriaceae. ITS gene phylogenetic analysis indicates that Sphaerellopsis belongs to Leptosphaeriaceae. Ophiobolus species form a clade within Phaeosphaeriaceae while Ophiosphaerella is shown to be polyphyletic. Phaeosphaeria sensu stricto is redefined. Two new species of Phaeosphaeria and one of Phaeosphaeriopsis are introduced while the asexual states of Phaeosphaeria chiangraina and Phaeosphaeriopsis dracaenicola are reported. Scolicosporium minkeviciusii forms a sister clade with Neostagonospora and Parastagonospora in Phaeosphaeriaceae. However, Scolicosporium minkeviciusii is not the type species. Thus, the placement of Scolicosporium sensu stricto in Phaeosphaeriaceae is questionable. Phylogenetic analysis of combined ITS and LSU genes, confirm the placement of Septoriella oudemansii in Phaeosphaeriaceae. However, it is not represented by the generic type, thus the placement of Septoriella is questionable. Setophaeosphaeria is excluded from Phaeosphariaceae as the type species, Sp. hemerocallidis forms a clade at the base of Cucurbitariaceae. Wilmia clusters in Didymosphaeriaceae and is synonymized under Letendraea. Barria, Chaetoplea, Hadrospora, Lautitia, Metameris, Mixtura and Pleoseptum are excluded from Phaeosphaeriaceae based on their morphological characters. The asexual genera Mycopappus and Xenostigmina are excluded from this family based on the phylogenetic evidence; these genera form a clade close to Melanommataceae.

116 citations


Cites background or methods or result from "Phylogeny and morphology of Phaeosp..."

  • ...Thus, Thambugala et al. (2014) synonymized Phaeosphaeriopsis musae under the older name Phaeosphaeria musae Sawada (1959) based on morphological characters and phylogenetic evidence....

    [...]

  • ...Type species: Phaeosphaeriopsis glaucopunctata Phylogenetic study: Câmara et al. (2003); Schoch et al. (2009); Zhang et al. (2012); Quaedvlieg et al. (2013); Hyde et al. (2013), Thambugala et al. (2014)....

    [...]

  • ...Additionally, Thambugala et al. (2014) epitypified Phaeosphaeriopsis glaucopunctata and described the new species Phaeosphaeriopsis triseptata K.M. Thambugala & K.D. Hyde with sexual and asexual morphs....

    [...]

  • ...The placement of the genus in Phaeosphaeriaceae was confirmed by multi-gene analysis (Quaedvlieg et al. 2013; Thambugala et al. 2014)....

    [...]

  • ...Molecular analysis confirms the placement of Phaeosphaeriopsis in Phaeosphaeriaceae (Zhang et al. 2012; Hyde et al. 2013; Quaedvlieg et al. 2013; Thambugala et al. 2014; Wijayawardene et al. 2014b)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: ClUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W, providing an integrated system for performing multiple sequence and profile alignments and analysing the results.
Abstract: CLUSTAL X is a new windows interface for the widely-used progressive multiple sequence alignment program CLUSTAL W. The new system is easy to use, providing an integrated system for performing multiple sequence and profile alignments and analysing the results. CLUSTAL X displays the sequence alignment in a window on the screen. A versatile sequence colouring scheme allows the user to highlight conserved features in the alignment. Pull-down menus provide all the options required for traditional multiple sequence and profile alignment. New features include: the ability to cut-and-paste sequences to change the order of the alignment, selection of a subset of the sequences to be realigned, and selection of a sub-range of the alignment to be realigned and inserted back into the original alignment. Alignment quality analysis can be performed and low-scoring segments or exceptional residues can be highlighted. Quality analysis and realignment of selected residue ranges provide the user with a powerful tool to improve and refine difficult alignments and to trap errors in input sequences. CLUSTAL X has been compiled on SUN Solaris, IRIX5.3 on Silicon Graphics, Digital UNIX on DECstations, Microsoft Windows (32 bit) for PCs, Linux ELF for x86 PCs, and Macintosh PowerMac.

38,522 citations


"Phylogeny and morphology of Phaeosp..." refers methods in this paper

  • ...Sequences were aligned using Bioedit 7.1.3.0 version (Hall 1999) and Clustal X v. 1.83 (Thompson et al. 1997) and if necessary, manually improved....

    [...]

  • ...83 (Thompson et al. 1997) and if necessary, manually improved....

    [...]

Journal ArticleDOI
TL;DR: TreeView is a simple, easy to use phylogenetic tree viewing utility that runs under both MacOS (on Apple Macintosh computers) and under Microsoft Windows on Intel based computers, the two most common personal computers used by biologists.
Abstract: TreeView is a simple, easy to use phylogenetic tree viewing utility that runs under both MacOS (on Apple Macintosh computers) and under Microsoft Windows on Intel based computers, the two most common personal computers used by biologists. Some phylogeny programs, such as PAUP (Swofford, 1993) and MacClade (Maddison and Maddison, 1992) already provide excellent tree drawing and printing facilities, however at present these programs are restricted to Apple Macintosh computers. Furthermore, they require the user to load a data set before any trees can be displayed which is inconvenient if the user simply wants to view the trees. More portable programs, such as DRAWGRAM and DRAWTREE in the PHYLIP package (Felsenstein, 1993) can run on both MacOS and Windows computers, but make little, if any use of the graphical interface features available under those operating systems. TreeView runs as a native application on either MacOS or Windows computers, enables the user to use the standard fonts installed on their machine, their printer, and supports the relevant native graphics format (PICT and Windows metafile) for either creating graphics files or pasting pictures to other applications via the clipboard. The program also supports standard file operations, such as 'drag and drop' whereby dragging a file's icon onto the program opens that file. TreeView can read a range of tree file formats (see below) and can display trees in a range of styles (Fig. 1). Additional information, such as edge lengths and internal node labels can also be displayed. The order of the terminal taxa in the tree can be altered, and the tree can be rerooted. If the tree file contains more than one tree the user can view each tree in turn. The program can also save trees in a variety of file formats, so that it can be used to move trees between programs that use different file formats.

10,368 citations


"Phylogeny and morphology of Phaeosp..." refers methods in this paper

  • ...The phylogram was visualized in Treeview (Page 1996)....

    [...]

Related Papers (5)