scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Physics basis and design of the ITER plasma-facing components

TL;DR: The ITER PFC design has now reached a rather mature stage following the 2007 ITER Design Review as discussed by the authors, and the key elements of the design, reviews the physics drivers, essentially thermal load specifications, which have defined the concept and discusses a selection of material and design issues.
About: This article is published in Journal of Nuclear Materials.The article was published on 2011-08-01. It has received 368 citations till now. The article focuses on the topics: Divertor.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors consider the risks engendered by the baseline divertor strategy with regard to known W plasma-material interaction issues and briefly present the current status of a possible full-tungsten (W) divertor design.

610 citations

Journal ArticleDOI
TL;DR: In this article, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination.
Abstract: Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion–strengthened options) and silicon carbide ceramic composites emerge as robust structural...

505 citations

Journal ArticleDOI
TL;DR: In this paper, the main focus is on the main design driver, steady state power fluxes in the DT phases, obtained from simulations using the 2-D SOLPS-4.3 and SolPS-ITER plasma boundary codes, assuming the use of the low Z seeding impurities nitrogen (N) and neon (Ne).
Abstract: On the eve of component procurement, this paper discusses the present physics basis for the first ITER tungsten (W) divertor, beginning with a reminder of the key elements defining the overall design, and outlining relevant aspects of the Research Plan accompanying the new “staged approach” to ITER nuclear operations which fixes the overall divertor lifetime constraint. The principal focus is on the main design driver, steady state power fluxes in the DT phases, obtained from simulations using the 2-D SOLPS-4.3 and SOLPS-ITER plasma boundary codes, assuming the use of the low Z seeding impurities nitrogen (N) and neon (Ne). A new perspective on the simulation database is adopted, concentrating purely on the divertor physics aspects rather than on the core-edge integration, which has been studied extensively in the course of the divertor design evolution and is published elsewhere. Emphasis is placed on factors which may increase the peak steady state loads: divertor target shaping for component misalignment protection, the influence of fluid drifts, and the consequences of narrow scrape-off layer heat flux channels. All tend to push the divertor into an operating space at higher sub-divertor neutral pressure in order to remain at power flux densities acceptable for the target material. However, a revised criterion for the maximum tolerable loads based on avoidance of W recrystallization, sets an upper limit potentially ∼50% higher than the previously accepted value of ∼10 MW m−2, a consequence both of the choice of material and the finalized component design. Although the simulation database is currently restricted to the 2-D toroidally symmetric situation, considerable progress is now also being made using the EMC3-Eirene 3-D code suite for the assessment of power loading in the presence of magnetic perturbations for ELM control. Some new results for low input power corresponding to the early H-mode operation phases are reported, showing that even if realistic plasma screening is taken into account, significant asymmetric divertor heat fluxes may arise far from the unperturbed strike point. The issue of tolerable limits for transient heat pulses is an open and key question. A new scaling for ELM power deposition has shown that whilst there may be more latitude for operation at higher current without ELM control, the ultimate limit is likely to be set more by material fatigue under large numbers of sub-threshold melting events.

312 citations

Journal ArticleDOI
TL;DR: In this paper, the authors defined the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER.
Abstract: Progress in the definition of the requirements for edge localized mode (ELM) control and the application of ELM control methods both for high fusion performance DT operation and non-active low-current operation in ITER is described. Evaluation of the power fluxes for low plasma current H-modes in ITER shows that uncontrolled ELMs will not lead to damage to the tungsten (W) divertor target, unlike for high-current H-modes in which divertor damage by uncontrolled ELMs is expected. Despite the lack of divertor damage at lower currents, ELM control is found to be required in ITER under these conditions to prevent an excessive contamination of the plasma by W, which could eventually lead to an increased disruptivity. Modelling with the non-linear MHD code JOREK of the physics processes determining the flow of energy from the confined plasma onto the plasma-facing components during ELMs at the ITER scale shows that the relative contribution of conductive and convective losses is intrinsically linked to the magnitude of the ELM energy loss. Modelling of the triggering of ELMs by pellet injection for DIII-D and ITER has identified the minimum pellet size required to trigger ELMs and, from this, the required fuel throughput for the application of this technique to ITER is evaluated and shown to be compatible with the installed fuelling and tritium re-processing capabilities in ITER. The evaluation of the capabilities of the ELM control coil system in ITER for ELM suppression is carried out (in the vacuum approximation) and found to have a factor of ∼2 margin in terms of coil current to achieve its design criterion, although such a margin could be substantially reduced when plasma shielding effects are taken into account. The consequences for the spatial distribution of the power fluxes at the divertor of ELM control by three-dimensional (3D) fields are evaluated and found to lead to substantial toroidal asymmetries in zones of the divertor target away from the separatrix. Therefore, specifications for the rotation of the 3D perturbation applied for ELM control in order to avoid excessive localized erosion of the ITER divertor target are derived. It is shown that a rotation frequency in excess of 1 Hz for the whole toroidally asymmetric divertor power flux pattern is required (corresponding to n Hz frequency in the variation of currents in the coils, where n is the toroidal symmetry of the perturbation applied) in order to avoid unacceptable thermal cycling of the divertor target for the highest power fluxes and worst toroidal power flux asymmetries expected. The possible use of the in-vessel vertical stability coils for ELM control as a back-up to the main ELM control systems in ITER is described and the feasibility of its application to control ELMs in low plasma current H-modes, foreseen for initial ITER operation, is evaluated and found to be viable for plasma currents up to 5–10 MA depending on modelling assumptions.

252 citations

Journal ArticleDOI
A.W. Leonard1
TL;DR: In this article, the authors show that when the gradient in the H-mode transport barrier grows to exceed the MHD stability limit, the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces.
Abstract: Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.

235 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, different aspects of the PWI are assessed in their importance for the initial wall materials choice: CFC for the strike point tiles, W in the divertor and baffle and Be on the first wall.

708 citations

Journal ArticleDOI
TL;DR: In this paper, the authors show that ELM energy losses are correlated with the density and temperature of the pedestal plasma before the ELM crash and the timescale of ELM particle fluxes.
Abstract: Analysis of Type I ELMs from ongoing experiments shows that ELM energy losses are correlated with the density and temperature of the pedestal plasma before the ELM crash. The Type I ELM plasma energy loss normalized to the pedestal energy is found to correlate across experiments with the collisionality of the pedestal plasma (ν*ped), decreasing with increasing ν*ped. Other parameters affect the ELM size, such as the edge magnetic shear, etc, which influence the plasma volume affected by the ELMs. ELM particle losses are influenced by this ELM affected volume and are weakly dependent on other pedestal plasma parameters. In JET and DIII-D, under some conditions, ELMs can be observed (`minimum' Type I ELMs with energy losses acceptable for ITER), that do not affect the plasma temperature. The duration of the divertor ELM power pulse is correlated with the typical ion transport time from the pedestal to the divertor target (τ||Front = 2πRq95/cs,ped) and not with the duration of the ELM-associated MHD activity. Similarly, the timescale of ELM particle fluxes is also determined by τ||Front. The extrapolation of the present experimental results to ITER is summarized.

492 citations

Journal ArticleDOI
TL;DR: In this paper, topology-dependent flow boundary conditions on the confined plasma were investigated in the low and high-field side scrape-off-layer (SOL) regions in Alcator C-Mod.
Abstract: Plasma profiles and flows in the low- and high-field side scrape-off-layer (SOL) regions in Alcator C-Mod are found to be remarkably sensitive to magnetic separatrix topologies (upper-, lower- and double-null) and to impose topology-dependent flow boundary conditions on the confined plasma. Near-sonic plasma flows along magnetic field lines are observed in the high-field SOL, with magnitude and direction clearly dependent on X-point location. The principal drive mechanism for the flows is a strong ballooning-like poloidal transport asymmetry: parallel flows arise so as to re-symmetrize the resulting poloidal pressure variation in the SOL. Secondary flows involving a combination of toroidal rotation and Pfirsch–Schluter ion currents are also evident. As a result of the transport-driven parallel flows, the SOL exhibits a net co-current (counter-current) volume-averaged toroidal momentum when B × ∇B is towards (away from) the X-point. Depending on the discharge conditions, flow momentum can couple across the separatrix and affect the toroidal rotation of the confined plasma. This mechanism accounts for a positive (negative) increment in central plasma co-rotation seen in L-mode discharges when B × ∇B is towards (away from) the X-point. Experiments in ion-cyclotron range-of-frequency-heated discharges suggest that topology-dependent flow boundary conditions may also play a role in the sensitivity of the L–H power threshold to X-point location: in a set of otherwise similar discharges, the L–H transition is seen to be coincident with central rotation achieving roughly the same value, independent of magnetic topology. For discharges with B × ∇B pointing away from the X-point (i.e. with the SOL flow boundary condition impeding co-current rotation), the same characteristic rotation can only be achieved with higher input power.

267 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the particle and radial flux density statistics in the scrape-off layer of TCV plasmas and direct comparison with two-dimensional interchange turbulence simulations at the outer midplane.
Abstract: Fluctuations and particle transport in the scrape-off layer of TCV plasmas have been investigated by probe measurements and direct comparison with two-dimensional interchange turbulence simulations at the outer midplane. The experiments demonstrate that with increasing line-averaged core plasma density, the radial particle density profile scale length becomes broader. The particle and radial flux density statistics in the far scrape-off layer exhibit a high degree of statistical similarity with respect to changes in the line-averaged density. The plasma flux onto the main chamber wall at the outer midplane scales linearly with the local particle density, suggesting that the particle flux here can be parameterized in terms of an effective convection velocity. Experimental probe measurements also provide evidence for significant parallel flows in the scrape-off layer caused by ballooning in the transport of particles and heat into the scrape-off layer. The magnitude of this flow estimated from pressure fluctuation statistics is found to compare favourably with the measured flow offset derived by averaging data obtained from flow profiles observed in matched forward and reversed field discharges. An interchange turbulence simulation has been performed for a single, relatively high density case, where comparison between code and experiment has been possible. Good agreement is found for almost all aspects of the experimental measurements, indicating that plasma fluctuations and transport in TCV scrape-off layer plasmas are dominated by radial motion of filamentary structures.

186 citations

Journal ArticleDOI
TL;DR: The ITER divertor design is the culmination of years of physics and engineering effort, building confidence that this critical component will satisfy the requirements and meet the challenge of burning plasma operation as discussed by the authors.
Abstract: The ITER divertor design is the culmination of years of physics and engineering effort, building confidence that this critical component will satisfy the requirements and meet the challenge of burning plasma operation. With 54 cassette assemblies, each weighing ~9 tonnes, nearly 3900 actively cooled high heat flux elements rated to steady-state surface power flux densities of 10 MW m−2 and a total of ~60 000 carbon fibre composite monoblocks and ~260 000 tungsten monoblocks/flat tiles, the ITER divertor will be the largest and most advanced of its kind ever constructed. Both the ITER Design Review and subsequent follow-up activities have led to a number of modifications to the device, including the divertor design, significantly improving ITER's operational flexibility. This paper outlines the salient features of the final divertor design, with emphasis on the physics rationale that has defined the design choices and on the performance of the resulting configuration.

181 citations

Related Papers (5)