scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling

07 Sep 2015-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 16, Iss: 9, pp 21215-21236
TL;DR: This work will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.
Abstract: Despite intense research, few treatments are available for most neurological disorders. Demyelinating diseases are no exception. This is perhaps not surprising considering the multifactorial nature of these diseases, which involve complex interactions between immune system cells, glia and neurons. In the case of multiple sclerosis, for example, there is no unanimity among researchers about the cause or even which system or cell type could be ground zero. This situation precludes the development and strategic application of mechanism-based therapies. We will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism. By making testable predictions and revealing critical gaps in existing knowledge, such models can help direct research and will provide a rigorous framework in which to integrate new data as they are collected. Nowadays, there is no shortage of data; the challenge is to make sense of it all. In that respect, computational modeling is an invaluable tool that could, ultimately, transform how we understand, diagnose, and treat demyelinating diseases.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the importance of evaluating the pulpal threshold to electrical stimulation, as a side effect of probable neuropathy in multiple sclerosis patients, is investigated, and the mean values of response to EPT were 1.2'±'0.5' and 1.8'± '0.9' in MS patients and healthy individuals.
Abstract: The importance of evaluating the pulpal threshold to electrical stimulation, as a side effect of probable neuropathy in Multiple Sclerosis (MS) patients is a novel issue. This study aimed to investigate electrical pulp test thresholds in MS patients without a history of trigeminal neuralgia compared to healthy individuals. Sixty-nine maxillary central incisors, belonging to 34 relapsing-remitting MS patients, and 35 healthy individuals were included in this survey. The MS patients matched for intended variables, were 22–50 years old, had a more than 1-year history of MS, no history of trigeminal neuralgia and/or other neuropathy. The electric pulp sensibility test was performed on all samples. Electric pulp testing (EPT) results were recorded based on the pulp tester’s grade that evoked a response. Data were analyzed with paired T-test, Mann-Whitney test, and Spearman correlation (P < 0.05). According to the results of this study, the mean values of response to EPT were 1.2 ± 0.5 and 1.8 ± 0.5 in MS patients and healthy individuals, respectively. The pulpal response to EPT between the two groups was significantly different (P < 0.0001). MS patients showed a significantly reduced response to the electric pulp test in their maxillary central incisors in comparison to matched healthy persons.

2 citations

Posted Content
TL;DR: Scanning micro X-ray Diffraction (S{\mu}XRD), which is a unique non-invasive probe of both k-space and real space allowing to visualize statistical fluctuations of myelin order with high spatial resolution in real space, is used to examine the myelin sheath in the sciatic nerve of Xenopus laevis.
Abstract: The ultrastructure fluctuations and complex dynamics of the multi-layered membrane structure of myelin are fundamental for understanding and control its formation process and the processes associated with degeneration and repair in neurological diseases such as multiple sclerosis (MS). Myelin is considered a quasi-crystalline material due to limitations of the available standard techniques that do not allow to solve heterogeneity and fluctuations in matter at nanoscale and mesoscale. To overcome this limitation in this work we used Scanning micro X-ray Diffraction (S{\mu}XRD), which is a unique non-invasive probe of both k-space and real space allowing to visualize statistical fluctuations of myelin order with high spatial resolution in real space. We have used this method to examine the myelin sheath in the sciatic nerve of Xenopus laevis. We have found that the stable periodic arrangement of myelin is ensured by large and anti-correlated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The correlated disorder of spatial fluctuations in the functional state is lost with early stage degeneration. Our results open the way for a deeper understanding of different states such as degradation and death in biomaterials like neurons, cells and tissues, by associating these states with dynamical structural fluctuations at the nanoscale.

1 citations

Book ChapterDOI
08 Sep 2016
TL;DR: This chapter will describe the direct and indirect neuroprotective effects of DMDs, as suggested by basic research studies and confirmed by clinical studies in some cases.
Abstract: Multiple sclerosis is a complex and heterogeneous immune-mediated disease that results in the progressive accumulation of mental and physical symptoms. Currently ap‐ proved disease-modifying drugs (DMDs) are immunomodulatory or immunosuppres‐ sive, but these drugs have little effect on disease progression. In addition to studies that have directly targeted inflammation and immune responses, a large number of studies, most of them experimental, have investigated neuroprotective therapies and remyelina‐ tion strategies. However, to date, attempts to provide neuroprotection have failed not just in multiple sclerosis but in neurological disorders in general; this situation has empha‐ sized the need to revise the old paradigm of a “magic bullet” with a single mechanism of action. Remyelination strategies involve either promoting endogenous remyelination or replacing lost myelinating cells through exogenous sources. However, several puzzle pieces regarding the physiology of remyelination remain unknown, including feasible treatment monitoring methods, the selection of patients, and the optimal time of treatment initiation. This chapter will describe the direct and indirect neuroprotective effects of DMDs, as suggested by basic research studies and confirmed by clinical studies in some cases. Current knowledge of potential neuroprotective therapies and remyelination strategies is also reviewed.

1 citations

Journal ArticleDOI
TL;DR: In this paper , a review of the role of remote technologies in the definition of digital phenotyping specific to brain-, body-and social-level neurodegenerative subtle symptoms, emphasizing inter-and intra-patient variability powered by deep learning.
Abstract: Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.

1 citations

Journal ArticleDOI
TL;DR: In this paper , the active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelification.
Abstract: Multiple sclerosis (MS) is a complex neurological condition that involves both inflammatory demyelinating and neurodegenerative components. MS research and treatments have traditionally focused on immunomodulation, with less investigation of neuroprotection, and this holds true for the role of vitamin D in MS. Researchers have already established that vitamin D plays an anti-inflammatory role in modulating the immune system in MS. More recently, researchers have begun investigating the potential neuroprotective role of vitamin D in MS. The active form of vitamin D, 1,25(OH)2D3, has a range of neuroprotective properties, which may be important in remyelination and/or the prevention of demyelination. The most notable finding relevant to MS is that 1,25(OH)2D3 promotes stem cell proliferation and drives the differentiation of neural stem cells into oligodendrocytes, which carry out remyelination. In addition, 1,25(OH)2D3 counteracts neurodegeneration and oxidative stress by suppressing the activation of reactive astrocytes and M1 microglia. 1,25(OH)2D3 also promotes the expression of various neuroprotective factors, including neurotrophins and antioxidant enzymes. 1,25(OH)2D3 decreases blood–brain barrier permeability, reducing leukocyte recruitment into the central nervous system. These neuroprotective effects, stimulated by 1,25(OH)2D3, all enhance neuronal survival. This review summarizes and connects the current evidence supporting the vitamin D-mediated mechanisms of action for neuroprotection in MS.
References
More filters
Journal ArticleDOI
TL;DR: These revisions simplify the McDonald Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.
Abstract: New evidence and consensus has led to further revision of the McDonald Criteria for diagnosis of multiple sclerosis. The use of imaging for demonstration of dissemination of central nervous system lesions in space and time has been simplified, and in some circumstances dissemination in space and time can be established by a single scan. These revisions simplify the Criteria, preserve their diagnostic sensitivity and specificity, address their applicability across populations, and may allow earlier diagnosis and more uniform and widespread use.

8,883 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...The differential diagnosis of MS closely follows the McDonald criteria [17]....

    [...]

Journal ArticleDOI
TL;DR: At a given time point of the disease, the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient, suggesting that MS may be a disease with heterogeneous pathogenetic mechanisms.
Abstract: Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS-like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T-cell‐mediated or T-cell plus antibody‐mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus- or toxin-induced demyelination rather than autoimmunity. At a given time point of the disease—as reflected in autopsy cases—the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease.

3,162 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...[46] proposed four distinct immunopatterns of plaque formation found in patients at different stages of the disease....

    [...]

  • ...Other factors causing axonal dysfunction or death include a lack of trophic support from myelin and oligodendrocytes, damage from soluble or cellular immune factors still present in the inactive plaque, and chronic mitochondrial failure in the setting of increased energy demands [46]....

    [...]

Journal ArticleDOI
TL;DR: The identity of the ions which carry the various phases of the membrane current is chiefly concerned with sodium ions, since there is much evidence that the rising phase of the action potential is caused by the entry of these ions.
Abstract: In the preceding paper (Hodgkin, Huxley & Katz, 1952) we gave a general description of the time course of the current which flows through the membrane of the squid giant axon when the potential difference across the membrane is suddenly changed from its resting value, and held at the new level by a feed-back circuit ('voltage clamp' procedure). This article is chiefly concerned with the identity of the ions which carry the various phases of the membrane current. One of the most striking features of the records of membrane current obtained under these conditions was that when the membrane potential was lowered from its resting value by an amount between about 10 and 100 mV. the initial current (after completion of the quick pulse through the membrane capacity) was in the inward direction, that is to say, the reverse ofthe direction of the current which the same voltage change would have caused to flow in an ohmic resistance. The inward current was of the right order of magnitude, and occurred over the right range of membrane potentials, to be the current responsible for charging the membrane capacity during the rising phase of an action potential. This suggested that the phase of inward current in the voltage clamp records might be carried by sodium ions, since there is much evidence (reviewed by Hodgkin, 1951) that the rising phase of the action potential is caused by the entry of these ions, moving under the influence of concentration and potential differences. To investigate this possibility, we carried out voltage clamp runs with the axon surrounded by solutions with reduced sodium concentration. Choline was used as an inert cation since replacement of sodium with this ion makes the squid axon completely inexcitable, but does not reduce the resting potential (Hodgkin & Katz, 1949; Hodgkin, Huxley & Katz, 1949).

2,315 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...the first thorough explanation of AP generation, was derived from experiments in unmyelinated giant axons of squid [63,64], but this early model has proven to be an invaluable tool from which later, more sophisticated models of myelinated axons have evolved....

    [...]

Journal ArticleDOI
TL;DR: Cognitive impairment in multiple sclerosis patients was not significantly associated with illness duration, depression, disease course, or medication usage, but was significantly (albeit weakly) correlated with physical disability.
Abstract: Previous frequency estimates of cognitive dysfunction in multiple sclerosis have ranged from 54 to 65 percent. These studies may overestimate the frequency in the general MS population, since the patients in these studies were recruited from clinic populations. In the present study, we administered a comprehensive neuropsychological test battery to 100 community‐based MS patients and 100 demographically matched healthy controls. Of 31 cognitive test indices examined, 48 MS patients and five controls were impaired on four or more test indices, yielding an overall frequency rate of 43% for the MS group. The pattern of cognitive decline was not uniform: MS patients were more frequently impaired on measures of recent memory, sustained attention, verbal fluency, conceptual reasoning, and visuospatial perception, and less frequently impaired on measures of language and immediate and remote memory. We developed a brief (20‐minute) screening battery empirically by selecting the four most sensitive test indices from the comprehensive battery. The brief battery yielded a sensitivity value of 71% and a specificity value of 94% in discriminating cognitively intact from impaired MS patients, as defined by the comprehensive battery. Cognitive impairment was not significantly associated with illness duration, depression, disease course, or medication usage, but was significantly (albeit weakly) correlated with physical disability. NEUROLOGY 1991;41:685‐691

2,079 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...Transition from RRMS to SPMS is foreboding for the lack of therapeutics to combat the exacerbated physical and cognitive deterioration that most SPMS patients face [9,37]....

    [...]

Journal ArticleDOI
TL;DR: A significant decrease in the effector function of CD4+CD25hi regulatory T cells from peripheral blood of patients with MS as compared with healthy donors is reported.
Abstract: CD4+CD25+ regulatory T cells contribute to the maintenance of peripheral tolerance by active suppression because their deletion causes spontaneous autoimmune diseases in mice. Human CD4+ regulatory T cells expressing high levels of CD25 are suppressive in vitro and mimic the activity of murine CD4+CD25+ regulatory T cells. Multiple sclerosis (MS) is an inflammatory disease thought to be mediated by T cells recognizing myelin protein peptides. We hypothesized that altered functions of CD4+CD25hi regulatory T cells play a role in the breakdown of immunologic self-tolerance in patients with MS. Here, we report a significant decrease in the effector function of CD4+CD25hi regulatory T cells from peripheral blood of patients with MS as compared with healthy donors. Differences were also apparent in single cell cloning experiments in which the cloning frequency of CD4+CD25hi T cells was significantly reduced in patients as compared with normal controls. These data are the first to demonstrate alterations of CD4+CD25hi regulatory T cell function in patients with MS.

1,813 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...Regulatory lymphocytes (Tregs) fail to suppress effector cells-mostly cytotoxic CD8+ cells [51]....

    [...]