scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Physiological Dynamics in Demyelinating Diseases: Unraveling Complex Relationships through Computer Modeling

07 Sep 2015-International Journal of Molecular Sciences (Multidisciplinary Digital Publishing Institute (MDPI))-Vol. 16, Iss: 9, pp 21215-21236
TL;DR: This work will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism.
Abstract: Despite intense research, few treatments are available for most neurological disorders. Demyelinating diseases are no exception. This is perhaps not surprising considering the multifactorial nature of these diseases, which involve complex interactions between immune system cells, glia and neurons. In the case of multiple sclerosis, for example, there is no unanimity among researchers about the cause or even which system or cell type could be ground zero. This situation precludes the development and strategic application of mechanism-based therapies. We will discuss how computational modeling applied to questions at different biological levels can help link together disparate observations and decipher complex mechanisms whose solutions are not amenable to simple reductionism. By making testable predictions and revealing critical gaps in existing knowledge, such models can help direct research and will provide a rigorous framework in which to integrate new data as they are collected. Nowadays, there is no shortage of data; the challenge is to make sense of it all. In that respect, computational modeling is an invaluable tool that could, ultimately, transform how we understand, diagnose, and treat demyelinating diseases.

Content maybe subject to copyright    Report

Citations
More filters
01 May 1954

464 citations

Journal ArticleDOI
TL;DR: The data showed that repeatability and comparability depend largely on the marker for the FVF (NODDI outperformed TFD), and that they were improved by masking, and that the calibration procedure is crucial, for example, calibration to a lower g‐ratio value than the commonly used one.
Abstract: A recent method, denoted in vivo g-ratio-weighted imaging, has related the microscopic g-ratio, only accessible by ex vivo histology, to noninvasive MRI markers for the fiber volume fraction (FVF) and myelin volume fraction (MVF). Different MRI markers have been proposed for g-ratio weighted imaging, leaving open the question which combination of imaging markers is optimal. To address this question, the repeatability and comparability of four g-ratio methods based on different combinations of, respectively, two imaging markers for FVF (tract-fiber density, TFD, and neurite orientation dispersion and density imaging, NODDI) and two imaging markers for MVF (magnetization transfer saturation rate, MT, and, from proton density maps, macromolecular tissue volume, MTV) were tested in a scan-rescan experiment in two groups. Moreover, it was tested how the repeatability and comparability were affected by two key processing steps, namely the masking of unreliable voxels (e.g., due to partial volume effects) at the group level and the calibration value used to link MRI markers to MVF (and FVF). Our data showed that repeatability and comparability depend largely on the marker for the FVF (NODDI outperformed TFD), and that they were improved by masking. Overall, the g-ratio method based on NODDI and MT showed the highest repeatability (90%) and lowest variability between groups (3.5%). Finally, our results indicate that the calibration procedure is crucial, for example, calibration to a lower g-ratio value (g = 0.6) than the commonly used one (g = 0.7) can change not only repeatability and comparability but also the reported dependency on the FVF imaging marker. Hum Brain Mapp 39:24-41, 2018. © 2017 Wiley Periodicals, Inc.

38 citations


Cites background from "Physiological Dynamics in Demyelina..."

  • ...It has been suggested that in the healthy condition axons and their microscopic substructures (e.g., their g-ratio) are finely tuned biological devices and that changes of their composition can lead to clinical syndromes [Coggan et al., 2015]....

    [...]

  • ..., their g-ratio) are finely tuned biological devices and that changes of their composition can lead to clinical syndromes [Coggan et al., 2015]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches.

38 citations

Posted Content
TL;DR: A second review on the topic of g-ratio mapping using MRI with a summary of the most recent developments in the field providing methodological background is published.
Abstract: The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. This is the second review on the topic of g-ratio mapping using MRI. As such, it summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. Using simulations based on recently published data, this review demonstrates the relevance of the calibration step for three myelin-markers (macromolecular tissue volume, myelin water fraction, and bound pool fraction). It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the potential of many novel techniques yet to be investigated.

25 citations


Cites background from "Physiological Dynamics in Demyelina..."

  • ...As the central nervous system appears to communicate at physical limits to constrain metabolic demands (Salami et al., 2003; Hartline and Colman, 2007; Coggan et al., 2015), small deviations from the optimal g-ratio value (0....

    [...]

Journal ArticleDOI
TL;DR: Over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes, and mitochondrial damage, depleted energy level and decreased ATPase activities were observed in mice exposed to Fe2O3-NPs.
Abstract: Iron oxide (Fe2O3) nanoparticles (NPs) attract the attention of clinicians for its unique magnetic and paramagnetic properties, which are exclusively used in neurodiagnostics and therapeutics among the other biomedical applications. Despite numerous research findings has already proved neurotoxicity of Fe2O3-NPs, factors affecting neurobehaviour has not been elucidated. In this study, mice were exposed to Fe2O3-NPs (25 and 50 mg/kg body weight) by oral intubation daily for 30 days. It was observed that Fe2O3-NPs remarkably impair motor coordination and memory. In the treated brain regions, mitochondrial damage, depleted energy level and decreased ATPase (Mg2+, Ca2+ and Na+/K+) activities were observed. Disturbed ion homeostasis and axonal demyelination in the treated brain regions contributes to poor motor coordination. Increased intracellular calcium ([Ca2+]i) and decreased expression of growth associated protein 43 (GAP43) impairs vesicular exocytosis could result in insufficient signal between neurons. In addition, levels of dopamine (DA), norepinephrine (NE) and epinephrine (EP) were found to be altered in the subjected brain regions in correspondence to the expression of monoamine oxidases (MAO). Along with all these factors, over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes.

15 citations

References
More filters
Journal ArticleDOI
TL;DR: Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns in mildly damaged nodes.
Abstract: In injured neurons, “leaky” voltage-gated sodium channels (Nav) underlie dysfunctional excitability that ranges from spontaneous subthreshold oscillations (STO), to ectopic (sometimes paroxysmal) excitation, to depolarizing block. In recombinant systems, mechanical injury to Nav1.6-rich membranes causes cytoplasmic Na+-loading and “Nav-CLS”, i.e., coupled left-(hyperpolarizing)-shift of Nav activation and availability. Metabolic injury of hippocampal neurons (epileptic discharge) results in comparable impairment: left-shifted activation and availability and hence left-shifted INa-window. A recent computation study revealed that CLS-based INa-window left-shift dissipates ion gradients and impairs excitability. Here, via dynamical analyses, we focus on sustained excitability patterns in mildly damaged nodes, in particular with more realistic Gaussian-distributed Nav-CLS to mimic “smeared” injury intensity. Since our interest is axons that might survive injury, pumps (sine qua non for live axons) are included. In some simulations, pump efficacy and system volumes are varied. Impacts of current noise inputs are also characterized. The diverse modes of spontaneous rhythmic activity evident in these scenarios are studied using bifurcation analysis. For “mild CLS injury”, a prominent feature is slow pump/leak-mediated EIon oscillations. These slow oscillations yield dynamic firing thresholds that underlie complex voltage STO and bursting behaviors. Thus, Nav-CLS, a biophysically justified mode of injury, in parallel with functioning pumps, robustly engenders an emergent slow process that triggers a plethora of pathological excitability patterns. This minimalist “device” could have physiological analogs. At first nodes of Ranvier and at nociceptors, e.g., localized lipid-tuning that modulated Nav midpoints could produce Nav-CLS, as could co-expression of appropriately differing Nav isoforms.

51 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...Other studies using bifurcation analysis suggest that ion concentration changes can introduce slow dynamics that may be important for understanding pathological outcomes [94,109]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the effects of demyelination on intrinsic axonal excitability using reduced Morris-Lecar models were investigated and it was shown that the ratio of sodium to leak conductance, gNa/gL, acted as a four-way switch controlling excitability patterns that included spike failure, single spike transmission, afterdischarge, and spontaneous spiking.
Abstract: Fast axonal conduction of action potentials in mammals relies on myelin insulation. Demyelination can cause slowed, blocked, desynchronized, or paradoxically excessive spiking that underlies the symptoms observed in demyelination diseases. The diversity and timing of such symptoms are poorly understood, often intermittent, and uncorrelated with disease progress. We modeled the effects of demyelination (and secondary remodeling) on intrinsic axonal excitability using Hodgkin–Huxley and reduced Morris–Lecar models. Simulations and analysis suggested a simple explanation for the breadth of symptoms and revealed that the ratio of sodium to leak conductance, gNa/gL, acted as a four-way switch controlling excitability patterns that included spike failure, single spike transmission, afterdischarge, and spontaneous spiking. Failure occurred when this ratio fell below a threshold value. Afterdischarge occurred at gNa/gL just below the threshold for spontaneous spiking and required a slow inward current that allowed for two stable attractor states, one corresponding to quiescence and the other to repetitive spiking. A neuron prone to afterdischarge could function normally unless it was switched to its “pathological” attractor state; thus, although the underlying pathology may develop slowly by continuous changes in membrane conductances, a discontinuous change in axonal excitability can occur and lead to paroxysmal symptoms. We conclude that tonic and paroxysmal positive symptoms as well as negative symptoms may be a consequence of varying degrees of imbalance between gNa and gL after demyelination. The KCNK family of gL potassium channels may be an important target for new drugs to treat the symptoms of demyelination.

50 citations

Journal ArticleDOI
TL;DR: A descriptive, mechanistic and deterministic model that is based on partial differential equations (PDE) enables the understanding of how the different complex phenomena interact with structures and elements during an immune response.
Abstract: In recent years, there has been an increasing interest in the mathematical and computational modeling of the human immune system (HIS). Computational models of HIS dynamics may contribute to a better understanding of the relationship between complex phenomena and immune response; in addition, computational models will support the development of new drugs and therapies for different diseases. However, modeling the HIS is an extremely difficult task that demands a huge amount of work to be performed by multidisciplinary teams. In this study, our objective is to model the spatio-temporal dynamics of representative cells and molecules of the HIS during an immune response after the injection of lipopolysaccharide (LPS) into a section of tissue. LPS constitutes the cellular wall of Gram-negative bacteria, and it is a highly immunogenic molecule, which means that it has a remarkable capacity to elicit strong immune responses. We present a descriptive, mechanistic and deterministic model that is based on partial differential equations (PDE). Therefore, this model enables the understanding of how the different complex phenomena interact with structures and elements during an immune response. In addition, the model's parameters reflect physiological features of the system, which makes the model appropriate for general use.

44 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...system [113], those related to MS typically model genetic interaction networks, either represented as sets of ordinary differential equations (ODEs) or Boolean networks....

    [...]

Journal ArticleDOI
TL;DR: The relapsing dynamic in MS derives from the emergent properties of the immune system operating in a pathological state, a fact that has implications for predicting disease course and developing new therapies for MS.
Abstract: Background: The relapsing-remitting dynamics is a hallmark of autoimmune diseases such as Multiple Sclerosis (MS). Although current understanding of both cellular and molecular mechanisms involved in the pathogenesis of autoimmune diseases is significant, how their activity generates this prototypical dynamics is not understood yet. In order to gain insight about the mechanisms that drive these relapsing-remitting dynamics, we developed a computational model using such biological knowledge. We hypothesized that the relapsing dynamics in autoimmunity can arise through the failure in the mechanisms controlling cross-regulation between regulatory and effector T cells with the interplay of stochastic events (e.g. failure in central tolerance, activation by pathogens) that are able to trigger the immune system. Results: The model represents five concepts: central tolerance (T-cell generation by the thymus), T-cell activation, T-cell memory, cross-regulation (negative feedback) between regulatory and effector T-cells and tissue damage. We enriched the model with reversible and irreversible tissue damage, which aims to provide a comprehensible link between autoimmune activity and clinical relapses and active lesions in the magnetic resonances studies in patients with Multiple Sclerosis. Our analysis shows that the weakness in this negative feedback between effector and regulatory Tcells, allows the immune system to generate the characteristic relapsing-remitting dynamics of autoimmune diseases, without the need of additional environmental triggers. The simulations show that the timing at which relapses appear is highly unpredictable. We also introduced targeted perturbations into the model that mimicked immunotherapies that modulate effector and regulatory populations. The effects of such therapies happened to be highly dependent on the timing and/or dose, and on the underlying dynamic of the immune system. Conclusion: The relapsing dynamic in MS derives from the emergent properties of the immune system operating in a pathological state, a fact that has implications for predicting disease course and developing new therapies for MS.

42 citations


"Physiological Dynamics in Demyelina..." refers background in this paper

  • ...a possible cellular mechanism of RRMS found breakdown in homeostasis of effector (Teff) and regulatory T (Treg) cells [114,115]....

    [...]

Journal ArticleDOI
TL;DR: It is suggested that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM, supported by the findings that, among others, MS N AGMAstrocytes express inflammasome components and that astroCytes are capable to release Il-1β in-vitro.
Abstract: Emerging as an important correlate of neurological dysfunction in Multiple Sclerosis (MS), extended focal and diffuse gray matter abnormalities have been found and linked to clinical manifestations such as seizures, fatigue and cognitive dysfunction. To investigate possible underlying mechanisms we analyzed the molecular alterations in histopathological normal appearing cortical gray matter (NAGM) in MS. By performing a differential gene expression analysis of NAGM of control and MS cases we identified reduced transcription of astrocyte specific genes involved in the astrocyte-neuron lactate shuttle (ANLS) and the glutamate-glutamine cycle (GGC). Additional quantitative immunohistochemical analysis demonstrating a CX43 loss in MS NAGM confirmed a crucial involvement of astrocytes and emphasizes their importance in MS pathogenesis. Concurrently, a Toll-like/IL-1β signaling expression signature was detected in MS NAGM, indicating that immune-related signaling might be responsible for the downregulation of ANLS and GGC gene expression in MS NAGM. Indeed, challenging astrocytes with immune stimuli such as IL-1β and LPS reduced their ANLS and GGC gene expression in vitro. The detected upregulation of IL1B in MS NAGM suggests inflammasome priming. For this reason, astrocyte cultures were treated with ATP and ATP/LPS as for inflammasome activation. This treatment led to a reduction of ANLS and GGC gene expression in a comparable manner. To investigate potential sources for ANLS and GGC downregulation in MS NAGM, we first performed an adjuvant-driven stimulation of the peripheral immune system in C57Bl/6 mice in vivo. This led to similar gene expression changes in spinal cord demonstrating that peripheral immune signals might be one source for astrocytic gene expression changes in the brain. IL1B upregulation in MS NAGM itself points to a possible endogenous signaling process leading to ANLS and GGC downregulation. This is supported by our findings that, among others, MS NAGM astrocytes express inflammasome components and that astrocytes are capable to release Il-1β in-vitro. Altogether, our data suggests that immune signaling of immune- and/or central nervous system origin drives alterations in astrocytic ANLS and GGC gene regulation in the MS NAGM. Such a mechanism might underlie cortical brain dysfunctions frequently encountered in MS patients.

41 citations


Additional excerpts

  • ...A computational approach will be necessary for integrating parallel and multifactorial etiologies associated with cognitive decline such as immune system signaling, energy metabolism, grey and white matter interactions, and genetic networks [117]....

    [...]