scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Physiological Pathways Regulating the Activity of Magnocellular Neurosecretory Cells

01 Apr 1999-Progress in Neurobiology (Prog Neurobiol)-Vol. 57, Iss: 6, pp 625-655
TL;DR: This review considers the rôle played by particular afferent pathways in the regulation of the activity of oxytocin and vasopressin cells.
About: This article is published in Progress in Neurobiology.The article was published on 1999-04-01. It has received 307 citations till now. The article focuses on the topics: Vasopressin & Oxytocin.
Citations
More filters
Journal ArticleDOI
TL;DR: The regulation by gonadal and adrenal steroids is one of the most remarkable features of the OT system and is, unfortunately, the least understood.
Abstract: The neurohypophysial peptide oxytocin (OT) and OT-like hormones facilitate reproduction in all vertebrates at several levels. The major site of OT gene expression is the magnocellular neurons of the hypothalamic paraventricular and supraoptic nuclei. In response to a variety of stimuli such as suckling, parturition, or certain kinds of stress, the processed OT peptide is released from the posterior pituitary into the systemic circulation. Such stimuli also lead to an intranuclear release of OT. Moreover, oxytocinergic neurons display widespread projections throughout the central nervous system. However, OT is also synthesized in peripheral tissues, e.g., uterus, placenta, amnion, corpus luteum, testis, and heart. The OT receptor is a typical class I G protein-coupled receptor that is primarily coupled via Gq proteins to phospholipase C-β. The high-affinity receptor state requires both Mg2+ and cholesterol, which probably function as allosteric modulators. The agonist-binding region of the receptor has bee...

2,691 citations

Journal ArticleDOI
TL;DR: This concept considers neuropeptides in the extracellular fluid of the brain rather than those in the cerebrospinal fluid or plasma as primary signals, triggering a variety of receptor-mediated effects, including those underlying behavioral and neuroendocrine regulation and psychopathology.

972 citations

Journal ArticleDOI
TL;DR: The recently demonstrated ability of neuropeptides to prime vesicle stores for activity-dependent release could lead to a temporary functional reorganization of neuronal networks harbouring specific peptide receptors, providing a substrate for long-lasting effects.
Abstract: Neuropeptides that are released from dendrites, such as oxytocin and vasopressin, function as autocrine or paracrine signals at their site of origin, but can also act at distant brain targets to evoke long-lasting changes in behaviour. Oxytocin, for instance, has profound effects on social bonding that are exerted at sites that richly express oxytocin receptors, but which are innervated by few, if any, oxytocin-containing projections. How can a prolonged, diffuse signal have coherent behavioural consequences? The recently demonstrated ability of neuropeptides to prime vesicle stores for activity-dependent release could lead to a temporary functional reorganization of neuronal networks harbouring specific peptide receptors, providing a substrate for long-lasting effects.

838 citations

Journal ArticleDOI
01 Sep 2001-Chest
TL;DR: Clinical use of vasopressin should await a randomized controlled trial of its effects on clinical outcomes such as organ failure and mortality, because clinical studies have been relatively small, focused on physiologic end points, and because of potential adverse effects of vasipressin.

544 citations

Journal ArticleDOI
TL;DR: Data supporting the concept of HNS effects on HPA axis activity is presented and their possible impact on some aspects of behavioural regulation and psychopathology is outlined.

438 citations

References
More filters
Journal ArticleDOI
03 Jun 1988-Science
TL;DR: Fos immunohistochemistry provides a cellular method to label polysynaptically activated neurons and thereby map functional pathways in response to polysynaptic activation.
Abstract: The proto-oncogene c-fos is expressed in neurons in response to direct stimulation by growth factors and neurotransmitters. In order to determine whether the c-fos protein (Fos) and Fos-related proteins can be induced in response to polysynaptic activation, rat hindlimb motor/sensory cortex was stimulated electrically and Fos expression examined immunohistochemically. Three hours after the onset of stimulation, focal nuclear Fos staining was seen in motor and sensory thalamus, pontine nuclei, globus pallidus, and cerebellum. Moreover, 24-hour water deprivation resulted in Fos expression in paraventricular and supraoptic nuclei. Fos immunohistochemistry therefore provides a cellular method to label polysynaptically activated neurons and thereby map functional pathways.

1,962 citations

Journal ArticleDOI
03 Apr 1997-Nature
TL;DR: The discovery and isolation from brain of a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has the highest specificity and affinity for the µ receptor of any endogenous substance so far described and they maybe natural ligands for this receptor.
Abstract: Peptides have been identified in mammalian brain that are considered to be endogenous agonists for the delta (enkephalins) and kappa (dynorphins) opiate receptors, but none has been found to have any preference for the mu receptor. Because morphine and other compounds that are clinically useful and open to abuse act primarily at the mu receptor, it could be important to identify endogenous peptides specific for this site. Here we report the discovery and isolation from brain of such a peptide, endomorphin-1 (Tyr-Pro-Trp-Phe-NH2), which has a high affinity (Ki = 360 pM) and selectivity (4,000- and 15,000-fold preference over the delta and kappa receptors) for the mu receptor. This peptide is more effective than the mu-selective analogue DAMGO in vitro and it produces potent and prolonged analgesia in mice. A second peptide, endomorphin-2 (Tyr-Pro-Phe-Phe-NH2), which differs by one amino acid, was also isolated. The new peptides have the highest specificity and affinity for the mu receptor of any endogenous substance so far described and they may be natural ligands for this receptor.

1,284 citations

Journal ArticleDOI
TL;DR: The autoradiographic material, and additional double-labeling experiments, were used to identify and to characterize projections that interconnect the A1, A2 and A6 regions, as well as possible projections from these cell groups to the spinal cord.

1,099 citations

Journal ArticleDOI
TL;DR: The extremely high concentrations and widespread distribution of neuropeptide Y in the central nervous system suggests a number of important physiological roles for this neurotransmitter candidate.

1,097 citations

Journal ArticleDOI
TL;DR: The findings indicate that central catecholamine neurons can be subdivided into distinct sub-groups based upon the coexistence of a specific peptide.

856 citations