scispace - formally typeset
Open accessJournal ArticleDOI: 10.2147/IJN.S294012

Phytomolecules-Coated NiO Nanoparticles Synthesis Using Abutilon indicum Leaf Extract: Antioxidant, Antibacterial, and Anticancer Activities.

02 Mar 2021-International Journal of Nanomedicine (Dove Press)-Vol. 16, pp 1757-1773
Abstract: Background NiO nanoparticles have attracted much attention due to their unique properties. They have been synthesized using chemical and physical techniques that often need toxic chemicals. These toxic chemicals cannot easily be removed from the nanoparticle’s surface, make them less biocompatible, and limit their biological applications. Instead, plants based green synthesis of nanoparticles uses phytomolecules as reducing and capping agents. These phytomolecules are biologically active with no or less toxic effects. Materials and Methods Phytomolecules-coated NiO nanoparticles were synthesized employing a green route using Abutilon indicum leaf extract. For comparative study, we also have synthesized NiO nanoparticles using the co-precipitation method. Synthesized nanoparticles were successfully characterized using different spectroscopic techniques. The synthesized nanoparticles were evaluated for antibacterial activity with agar well diffusion assay against different bacteria compared to standard drug and plant extract. They are also examined for anticancer potential using MTT assay against HeLa cancer cells, and further, their antioxidant potential was determined using DPPH assay. Biocompatibility of the synthesized nanoparticles was assessed against fibroblast cells. Results Phytomolecules-coated NiO nanoparticles were demonstrated superior antibacterial and anticancer performance against bacteria (E. coli, B. bronchiseptica, B. subtilis, and S. aureus) by presenting highest zone of inhibitions (18 ± 0.58 mm, 21 ± 0.45 mm, 22 ± 0.32 mm, and 23 ± 0.77 mm) and HeLa cancer cells by exhibiting the least cell viability percentage (51.74 ± 0.35%) compared to plant extract and chemically synthesized NiO nanoparticles but were comparable to standard antibiotic and anticancer drugs, respectively. Phytomolecules-coated NiO nanoparticles were also demonstrated excellent antioxidant activity (79.87 ± 0.43% DPPH inhibition) and biocompatibility (> 90% cell viability) with fibroblast cells. Conclusion Nanoparticle synthesis using the Abutilon indicum leaf extract is an efficient and economical method, produces biocompatible and more biologically active nanoparticles, which can be an excellent candidate for therapeutic applications.

... read more

Citations
  More

12 results found


Open accessJournal ArticleDOI: 10.2147/IJN.S307676
Abstract: Background Abelmoschus esculentus (L.) Moench, an economically important malvaceous vegetable crop popularly known as okra, is used in various culinary preparations and is rich in vitamins, minerals, and nutrients. The biological properties of okra flowers in relation to nanoparticle synthesis have not yet been reported. Materials and methods In the current study, silver nanoparticles (AgNPs) were synthesized using extracts of the flowers of A. esculentus. The characteristics of the AgNPs were studied using a UV-vis spectrometer, Fourier transmission infrared spectrophotometer (FTIR), X-ray diffractometer (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray spectrometer (EDX). Antibacterial activity screening was performed using the agar well diffusion method, and cytotoxicity and cell viability studies were conducted using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Results The synthesized AgNPs were spherical and ranged in size from 5.52 to 31.96 nm, with an average size of 16.19 nm, as determined by UV-vis spectroscopy, FTIR, XRD, TEM and EDX. A. esculentus flower extract-mediated silver nanoparticles (AME-AgNPs) exhibited excellent activities in vitro studies, particularly in vitro cytotoxic and antiproliferative studies against cancer cell lines, such as the TERT-4 and A-549 cell lines. The antibacterial effects on the Gram-positive pathogens Bacillus subtilis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes and the Gram-negative pathogens Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Salmonella typhimurium and Shigella sonnei were tested. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values varied with the bacterial strain. The IC50 values of the synthesized NPs for the tested cell lines were close to that of a standard drug. Conclusion Compared to other NPs the NPs synthesized in this study were smaller in size and exhibited a higher level of antibacterial activity, cytotoxicity and apoptosis at minimal concentrations, and this is the first study on okra flower-induced anticancer and antimicrobial activities.

... read more

9 Citations


Journal ArticleDOI: 10.1016/J.CERAMINT.2021.08.042
Abstract: The present work aimed to synthesize Zn0.95Ag0.05O (ZnAgO) nanoparticles using rosemary leaf extracts as a green chemistry method. The characterization of Ag-doped ZnO nanoparticles was performed by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectrophotometry (UV–visible). The XRD, FTIR, and UV–visible spectra confirmed the formation of the presence of hexagonal ZnAgO nanoparticles. FESEM micrograph shows that the nanoparticles have been distributed homogeneously and uniformly. The morphology of ZnAgO nanoparticles is quasi-spherical configuration. Also, the mean particle size is in the range of 22–40 nm. The photocatalytic degradation of methylene blue in the presence of Ag-doped ZnO nanoparticles is nearly 98.5% after exposing 100 min. The ultraviolet lamp was used as the light source for photocatalyst degradation. The disc diffusion method was chosen to study the antibacterial activity of as-synthesized ZnAgO nanoparticles. Antibacterial activity of Zn0.95Ag0.05O nanoparticles against Staphylococcus aureus and Escherichia coli revealed that the as-synthesized ZnAgO nanoparticles were efficient in inhibition of bacterial growth.

... read more

3 Citations


Open accessJournal ArticleDOI: 10.1080/17518253.2021.1923824
Abstract: In the current paper, NiO-NPs were synthesized through a sol–gel method by the usage of a biocompatible polymer known as Arabic gum (GA) as a stabilizing agent. The structural, optical, and magneti...

... read more

Topics: Gum arabic (56%)

3 Citations


Journal ArticleDOI: 10.1016/J.CERAMINT.2021.06.135
Abstract: Considering the significant role of metal nanoparticles in the detection and removal of pollutants from the environment, metal oxides stand as inexpensive materials at the scale of nanometers that are capable of participating in photocatalytic and decontamination procedures. Meanwhile, nickel nanoparticles have been applied as a new approach for removing the existing pollution from the environment. In this paper, we have synthesized copper doping nickel oxide nanoparticles (Cu-doped NiO-NPs) by a sol-gel method that involved the application of okra plant extract and had investigated their photocatalytic properties and cytotoxicity effects. The obtained Cu-doped NiO-NPs have been characterized through FT-IR, UV–Vis, XRD, FESEM/EDAX/PSA, and VSM analyses in different concentrations (1, 3, and 5%) of copper at an optimum temperature of 400 °C. According to the XRD results, the size of nanoparticles under optimal conditions (at the temperature of 400 °C and % 3 Cu-doped) has been observed to be 10.66 nm while containing a face-centered cubic (fcc) structure. Furthermore, the obtained FESEM outcomes have been indicative of the good dispersion of these nanoparticles. Also, photocatalytic activity of Cu-doped NiO-NPs through the degradation of methylene blue (MB) pigment studied under UV-A light and had detected 78% of degradation throughout 105 min. To complete the characterization process, the cytotoxicity of nanoparticles in inhibiting the cancer CT26 cells has been determined using of MTT assay.

... read more

Topics: Nanoparticle (53%), Nickel oxide (53%), Photocatalysis (51%)

1 Citations


Journal ArticleDOI: 10.1111/JAM.15177
Abstract: AIMS The use of cyanobacterial cell extracts for the synthesis of zinc oxide nanoparticles (ZnO NPs) seems to be superior to other methods of synthesis because of its a green, environmentally friendly and low-cost approach. In this study, the cell extract of a newly characterized cyanobacterial strain Desertifilum sp. EAZ03 was used for the biosynthesis of ZnO NPs. The antimicrobial, antibiofilm and anticancer activities of the biosynthesized ZnO NPs (hereinafter referred to as CED-ZnO NPs) were examined as well. METHODS AND RESULTS UV-Vis spectroscopy analysis of CED-ZnO NPs showed an absorbance band at 364 nm, and powder X-ray diffraction analysis confirmed the purity of the synthesized nanoparticles. The analyses of scanning electron microscopy and transmission electron microscopy images revealed that CED-ZnO NPs were rod-shaped with a size of 88 nm. The study of the biological features of CED-ZnO NPs showed a significant antimicrobial potential against the bacterial strains tested. CED-ZnO NPs were able to impede the biofilm formation by Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa up to 80%, 89% and 85%, respectively. The nanoparticles also showed 69%, 70% and 62% degrading activity against S. aureus, E. coli and P. aeruginosa 1-day-old biofilms, respectively. The antibiofilm activity of the synthesized nanoparticles was investigated by confocal laser scanning microscopy. The MTT assay showed that CED-ZnO NPs, at a concentration of 100 μg/ml, had less cytotoxicity towards normal lung (MRC-5) cells, at the half, compared to cancerous lung alveolar epithelial (A549) cells. The minimum inhibitory concentration and minimum bactericidal concentration values of CED-ZnO NPs against E. coli, P. aeruginosa and S. aureus were 1500, 2000 and 32 μg/ml, and 2500, 3500 and 64 μg/ml, respectively. CONCLUSIONS The multifunctional CED-ZnO NPs seem to be promising for possible applications in the therapeutic and pharmaceutical industries. SIGNIFICANCE AND IMPACT OF THE STUDY This study proposes a new approach for the biosynthesis of zinc oxide nanoparticles using a newly characterized cyanobacterial strain Desertifilum sp. EAZ03. The considerable antimicrobial, antibiofilm and anticancer activities of the biosynthesized zinc oxide nanoparticles further emphasize the emerging role of microbial systems in the green synthesis of metal oxide nanoparticles.

... read more

1 Citations


References
  More

49 results found


Journal ArticleDOI: 10.1038/NATURE17042
Eric D. Brown1, Gerard D. Wright1Institutions (1)
21 Jan 2016-Nature
Abstract: The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

... read more

1,089 Citations


Journal ArticleDOI: 10.1039/C5RA05069C
20 May 2015-RSC Advances
Abstract: Flavonoids are widely occurring polyphenol compounds of plant origin with multiple biological and chemical activities. Due to the presence of carbonyl and hydroxyl groups they can coordinate metal ions and form complexes. Metal complexes of flavonoids have many interesting properties: they are colored, often fluorescent, anti- or pro-oxidant, antimicrobial, antiproliferative and biologically active in many other ways. There are many papers covering specific aspects of activity of flavonoid metal complexes, e.g. their antioxidant properties, enzyme-mimicking behavior, therapeutic potential or use in chemical analysis. However, for a researcher interested in this theme, it would be useful to find an extensive review on more than one selected area. Our aim was to cover a wide spectrum of possible activities and potential applications of flavonoids coordinated to metal ions in order to give our readers a broad view on the topic of this class of compounds, their activity and potential applications. While a significant amount of information on the chemical properties and biological activity of flavonoid metal complexes can be found in the literature, an in-depth understanding of structure–property relationships is still lacking. In an attempt to address this issue, a comprehensive discussion of the available data is presented.

... read more

199 Citations


Journal ArticleDOI: 10.1007/S00436-007-0864-5
Abstract: Larvicidal activity of crude hexane, ethyl acetate, petroleum ether, acetone and methanol extracts of five medicinal plants, Abutilon indicum, Aegle marmelos, Euphorbia thymifolia, Jatropha gossypifolia and Solanum torvum were assayed for their toxicity against the early fourth-instar larvae of Culex quinquefasciatus. The larval mortality was observed after 24 h exposure. All extracts showed moderate larvicidal effects; however, the highest larval mortality was found in petroleum ether extract of A. indicum. In the present study, bioassay-guided fractionation of A. indicum led to the separation and identification of a β-sitosterol as a potential new mosquito larvicidal compound with LC50 value of 11.49, 3.58 and 26.67 ppm against Aedes aegypti L, Anopheles stephensi Liston and C. quinquefasciatus Say (Diptera: Culicidae), respectively. 1H NMR, 13C NMR and mass spectral data confirmed the identification of the active compound. β-sitosterol has been recognized as the active ingredient of many medicinal plant extracts. All the crude extracts when screened for their larvicidal activities indicated toxicity against the larvae of C. quinquefasciatus. This article reports the isolation and identification of the β-sitosterol as well as bioassay data for the crude extracts. There are no reports of β-sitosterol in the genus A. indicum, and their larvicidal activities are being evaluated for the first time. Results of this study show that the petroleum ether extract of A. indicum may be considered as a potent source and β-sitosterol as a new natural mosquito larvicidal agent.

... read more

Topics: Abutilon indicum (58%), Petroleum ether (52%), Aedes aegypti (51%) ... read more

185 Citations


Journal ArticleDOI: 10.1016/0022-0728(95)04099-A
Abstract: Using a glassy carbon electrode modified with nickel oxide by a novel route, the electrocatalysis of a number of sugars and aliphatic alcohols is reported. Kinetic parameters are computed and compared with the reported data. The mechanism of oxidation of these organic compounds is discussed.

... read more

Topics: Glassy carbon (62%), Nickel oxide (60%), Carbon (52%) ... read more

175 Citations


Journal ArticleDOI: 10.1016/J.JPHOTOBIOL.2018.01.023
Abstract: In the present study, we report the green synthesis of NiO nanoparticles using Aegle marmelos as a fuel and this method is ecofriendly and cost effective. The plant Aegle marmelos is used in the field of pharmaceuticals to cure diseases like chronic diarrhea, peptic ulcers and dysentery in India for nearly 5 centuries. The as-prepared nanoparticles were confirmed as pure face centered cubic phase and single crystalline in nature by XRD. The formation of agglomerated spherical nanoparticles was shown by HR-SEM and HR-TEM images. The particle size calculated from HR-SEM was in the range 8-10 nm and it matches with the average crystallite size calculated from the XRD pattern. NiO shows intense emission peaks at 363 and 412 nm in its PL spectra. The band gap of 3.5 eV is observed from DRS studies and the formation of pure NiO is confirmed by FT-IR spectra. The as-prepared NiO nanoparticles show super paramagnetic behavior, when magnetization studies are carried out. It is then evaluated for cytotoxic activity towards A549 cell culture, antibacterial activity and photocatalytic degradation (PCD) of 4‑chlorophenol (4‑CP), which is known as the endocrine disrupting chemical (EDC). From the results, it is found that the cell viability of A549 cells was effectively reduced and it showed better antibacterial activity towards gram positive bacterial strains. It is also proved to be an efficient and stable photocatalyst towards the degradation of 4‑CP.

... read more

144 Citations