scispace - formally typeset
Open accessJournal ArticleDOI: 10.3390/IJERPH18052435

Phytoremediation and Microorganisms-Assisted Phytoremediation of Mercury-Contaminated Soils: Challenges and Perspectives.

02 Mar 2021-International Journal of Environmental Research and Public Health (MDPI AG)-Vol. 18, Iss: 5, pp 2435
Abstract: Mercury (Hg) pollution is a global threat to human and environmental health because of its toxicity, mobility and long-term persistence. Although costly engineering-based technologies can be used to treat heavily Hg-contaminated areas, they are not suitable for decontaminating agricultural or extensively-polluted soils. Emerging phyto- and bioremediation strategies for decontaminating Hg-polluted soils generally involve low investment, simple operation, and in situ application, and they are less destructive for the ecosystem. Current understanding of the uptake, translocation and sequestration of Hg in plants is reviewed to highlight new avenues for exploration in phytoremediation research, and different phytoremediation strategies (phytostabilization, phytoextraction and phytovolatilization) are discussed. Research aimed at identifying suitable plant species and associated-microorganisms for use in phytoremediation of Hg-contaminated soils is also surveyed. Investigation into the potential use of transgenic plants in Hg-phytoremediation is described. Recent research on exploiting the beneficial interactions between plants and microorganisms (bacteria and fungi) that are Hg-resistant and secrete plant growth promoting compounds is reviewed. We highlight areas where more research is required into the effective use of phytoremediation on Hg-contaminated sites, and conclude that the approaches it offers provide considerable potential for the future.

... read more

Topics: Phytoremediation (59%), Bioremediation (55%)

8 results found

Open accessJournal ArticleDOI: 10.1016/J.ENVC.2021.100197
Sharda Pasricha1, Vartika Mathur1, Arushi Garg1, Satyajit Lenka1  +2 moreInstitutions (1)
01 Aug 2021-
Abstract: Phytoremediation is an economically viable green technology that utilizes hyperaccumulator plants to remove heavy metals (HM) from the soil. Hyperaccumulators are adept at sequestering high concentrations of HM in aerial parts and intracellular detoxification of HM through cell wall binding, organic acids, chelation and sequestration. Excess HM activate oxidative stress defense mechanisms and initiate synthesis of stress-related proteins in plants. Plethora of studies have assessed the feasibility of phytoextraction and demonstrated that high biomass and metal hyperaccumulation are the two basic requirements for making the process efficient. However, biochemical pathways involved in HM uptake, translocation and sequestration in these plants are not fully understood. Thus, more fundamental understanding of the traits and mechanisms involved in hyperaccumulation is needed to optimize phytoextraction. In this review, we aim to focus on the mechanisms of uptake, transport, and accumulation of common HM such as mercury (Hg), lead (Pb), cadmium (Cd), chromium (Cr), zinc (Zn), copper (Cu) and Arsenic (As) in hyperaccumulator plants. We will also discuss prominent metallophytes and their phytoremediation strategies. This study will be helpful in understanding the pathways involved in the uptake and translocation of HM by hyperaccumulators. It would also assist in gaining knowledge about the adaptation strategy used by plants to achieve homeostasis.

... read more

Topics: Phytoremediation (55%), Hyperaccumulator (53%)

6 Citations

Open accessJournal ArticleDOI: 10.3390/MA14102559
14 May 2021-Materials
Abstract: In recent years, a lot of attention has been given to searching for new additives which will effectively facilitate the process of immobilizing contaminants in the soil. This work considers the role of the enhanced nano zero valent iron (nZVI) strategy in the phytostabilization of soil contaminated with potentially toxic elements (PTEs). The experiment was carried out on soil that was highly contaminated with PTEs derived from areas in which metal waste had been stored for many years. The plants used comprised a mixture of grasses—Lolium perenne L. and Festuca rubra L. To determine the effect of the nZVI on the content of PTEs in soil and plants, the samples were analyzed using flame atomic absorption spectrometry (FAAS). The addition of nZVI significantly increased average plant biomass (38%), the contents of Cu (above 2-fold), Ni (44%), Cd (29%), Pb (68%), Zn (44%), and Cr (above 2-fold) in the roots as well as the soil pH. The addition of nZVI, on the other hand, was most effective in reducing the Zn content of soil when compared to the control series. Based on the investigations conducted, the application of nZVI to soil highly contaminated with PTEs is potentially beneficial for the restoration of polluted lands.

... read more

Topics: Soil contamination (54%), Soil pH (52%), Nanoremediation (51%) ... show more

1 Citations

Open accessJournal ArticleDOI: 10.3390/HORTICULTURAE7090302
09 Sep 2021-Horticulturae
Abstract: Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.

... read more

Topics: Lupinus (53%)

Open accessDOI: 10.1021/ACSENVIRONAU.1C00022
Tamar Barkay1, Baohua Gu2Institutions (2)
02 Nov 2021-
Abstract: The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environmen...

... read more

Topics: Mercury (element) (56%)


200 results found

Open accessJournal ArticleDOI: 10.1093/MOLBEV/MSY096
Sudhir Kumar1, Sudhir Kumar2, Glen Stecher1, Michael Li1  +2 moreInstitutions (3)
Abstract: The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from free of charge.

... read more

Topics: Mega- (60%), Virtualization (51%), Software (50%)

11,718 Citations

Open accessJournal ArticleDOI: 10.1093/NAR/GKW290
Ivica Letunic, Peer Bork1Institutions (1)
Abstract: Interactive Tree Of Life ( is a web-based tool for the display, manipulation and annotation of phylogenetic trees. It is freely available and open to everyone. The current version was completely redesigned and rewritten, utilizing current web technologies for speedy and streamlined processing. Numerous new features were introduced and several new data types are now supported. Trees with up to 100,000 leaves can now be efficiently displayed. Full interactive control over precise positioning of various annotation features and an unlimited number of datasets allow the easy creation of complex tree visualizations. iTOL 3 is the first tool which supports direct visualization of the recently proposed phylogenetic placements format. Finally, iTOL's account system has been redesigned to simplify the management of trees in user-defined workspaces and projects, as it is heavily used and currently handles already more than 500,000 trees from more than 10,000 individual users.

... read more

Topics: Tree (data structure) (51%)

3,518 Citations

Open accessJournal ArticleDOI: 10.1093/JEXBOT/53.366.1
J. L. Hall1Institutions (1)
Abstract: Heavy metals such as Cu and Zn are essential for normal plant growth, although elevated concentrations of both essential and non-essential metals can result in growth inhibition and toxicity symptoms. Plants possess a range of potential cellular mechanisms that may be involved in the detoxification of heavy metals and thus tolerance to metal stress. These include roles for the following: for mycorrhiza and for binding to cell wall and extracellular exudates; for reduced uptake or efflux pumping of metals at the plasma membrane; for chelation of metals in the cytosol by peptides such as phytochelatins; for the repair of stress-damaged proteins; and for the compartmentation of metals in the vacuole by tonoplast-located transporters. This review provides a broad overview of the evidence for an involvement of each mechanism in heavy metal detoxification and tolerance.

... read more

2,524 Citations

Open accessJournal ArticleDOI: 10.6064/2012/963401
Bernard R. Glick1Institutions (1)
11 Oct 2012-
Abstract: The worldwide increases in both environmental damage and human population pressure have the unfortunate consequence that global food production may soon become insufficient to feed all of the world's people. It is therefore essential that agricultural productivity be significantly increased within the next few decades. To this end, agricultural practice is moving toward a more sustainable and environmentally friendly approach. This includes both the increasing use of transgenic plants and plant growth-promoting bacteria as a part of mainstream agricultural practice. Here, a number of the mechanisms utilized by plant growth-promoting bacteria are discussed and considered. It is envisioned that in the not too distant future, plant growth-promoting bacteria (PGPB) will begin to replace the use of chemicals in agriculture, horticulture, silviculture, and environmental cleanup strategies. While there may not be one simple strategy that can effectively promote the growth of all plants under all conditions, some of the strategies that are discussed already show great promise.

... read more

1,593 Citations

Open accessJournal ArticleDOI: 10.1099/MIC.0.037143-0
Geoffrey M. Gadd1Institutions (1)
01 Mar 2010-Microbiology
Abstract: Microbes play key geoactive roles in the biosphere, particularly in the areas of element biotransformations and biogeochemical cycling, metal and mineral transformations, decomposition, bioweathering, and soil and sediment formation. All kinds of microbes, including prokaryotes and eukaryotes and their symbiotic associations with each other and 'higher organisms', can contribute actively to geological phenomena, and central to many such geomicrobial processes are transformations of metals and minerals. Microbes have a variety of properties that can effect changes in metal speciation, toxicity and mobility, as well as mineral formation or mineral dissolution or deterioration. Such mechanisms are important components of natural biogeochemical cycles for metals as well as associated elements in biomass, soil, rocks and minerals, e.g. sulfur and phosphorus, and metalloids, actinides and metal radionuclides. Apart from being important in natural biosphere processes, metal and mineral transformations can have beneficial or detrimental consequences in a human context. Bioremediation is the application of biological systems to the clean-up of organic and inorganic pollution, with bacteria and fungi being the most important organisms for reclamation, immobilization or detoxification of metallic and radionuclide pollutants. Some biominerals or metallic elements deposited by microbes have catalytic and other properties in nanoparticle, crystalline or colloidal forms, and these are relevant to the development of novel biomaterials for technological and antimicrobial purposes. On the negative side, metal and mineral transformations by microbes may result in spoilage and destruction of natural and synthetic materials, rock and mineral-based building materials (e.g. concrete), acid mine drainage and associated metal pollution, biocorrosion of metals, alloys and related substances, and adverse effects on radionuclide speciation, mobility and containment, all with immense social and economic consequences. The ubiquity and importance of microbes in biosphere processes make geomicrobiology one of the most important concepts within microbiology, and one requiring an interdisciplinary approach to define environmental and applied significance and underpin exploitation in biotechnology.

... read more

1,337 Citations

No. of citations received by the Paper in previous years
Network Information
Related Papers (5)
A review on phytoremediation of mercury contaminated soils.19 Jun 2020, Journal of Hazardous Materials

Zhongchuang Liu, Boning Chen +5 more

87% related
Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review06 Aug 2015, Open Journal of Ecology

Meriem Laghlimi, Bouamar Baghdad +2 more

82% related
Phytoremediation to Remove Metals/Metalloids from Soils01 Jan 2015

Jian Chen, Yi Chen +3 more

81% related