scispace - formally typeset
Search or ask a question
Patent

Piezoelectric composite thin film resonator

TL;DR: In this paper, a piezoelectric composite thin-film resonator has been proposed, which has good temperature stability and resonance response, in a fundamental thickness-extensional vibration mode.
Abstract: A piezoelectric composite thin-film resonator has good temperature stability and resonance response, in a fundamental thickness-extensional vibration mode. Spurious vibrations caused by even-number order harmonic overtones are suppressed. The resonator has a thin film of SiO2 or other materials having a resonant frequency temperature coefficient which is opposite to that of the piezoelectric material. The SiO2 layer is inserted between two thin films of ZnO, CdS, AlN, or other piezoelectric materials. This sandwiched structure is positioned between a pair of electrode films and is supported by an insulative or a semiconductive film which is in turn fixed to a substrate. The thicknesses of the thin films have values such that an overall temperature coefficient of the resonant frequency may be at or near substantially zero. In order to better remove the even-number order harmonics, it is preferable to cover the upper electrode film with a thin film of semiconductor or insulator material.
Citations
More filters
Patent
13 Nov 1998
TL;DR: An acoustical resonator comprising top and bottom electrodes that sandwich a PZ layer was constructed in this article. And the resonance frequency of the resonator can be adjusted after fabrication by utilizing heating elements included in the acoustic resonator and/or by adjusting the thickness of a tuning layer.
Abstract: An acoustical resonator comprising top and bottom electrodes that sandwich a PZ layer. The resonance frequency of the acoustical resonator may be adjusted after fabrication by utilizing heating elements included in the acoustical resonator and/or by adjusting the thickness of a tuning layer. In the preferred embodiment of the present invention, the electrodes comprise Mo layers. One embodiment of the present invention is constructed on a Si3 N4 membrane. A second embodiment of the present invention is constructed such that it is suspended over a substrate on metallic columns. In the preferred embodiment of the present invention, the electrodes are deposited by a method that minimizes the stress in the electrodes.

285 citations

Patent
23 Jun 2005
TL;DR: In this paper, an acoustic resonator that includes a substrate, a first electrode, a layer of piezoelectric material, a second electrode, and an alternating frame region is described.
Abstract: Disclosed is an acoustic resonator that includes a substrate, a first electrode, a layer of piezoelectric material, a second electrode, and an alternating frame region. The first electrode is adjacent the substrate, and the first electrode has an outer perimeter. The piezoelectric layer is adjacent the first electrode. The second electrode is adjacent the piezoelectric layer and the second electrode has an outer perimeter. The alternating frame region is on one of the first and second electrodes.

223 citations

PatentDOI
TL;DR: In this article, a piezoelectric/electrostrictive device including a substrate and a connection plate having a first end joined to the substrate and an opposed second end extending along a first direction, and first and second opposed sides along a second direction perpendicular to the first direction is presented.
Abstract: A piezoelectric/electrostrictive device including a substrate and a connection plate having a first end joined to the substrate and an opposed second end extending along a first direction, and first and second opposed sides along a second direction perpendicular to the first direction. A fixing plate is joined to the second end of the connection plate. A first side of a first diaphragm is joined to the first side of the connection plate and an opposed second side of the first diaphragm is joined to the substrate. A first side of a second diaphragm is joined to the substrate and an opposed second side of the second diaphragm is joined to the second side of the connection plate. A piezoelectric/electrostrictive element is provided on at least a portion of at least one planar surface of at least one of the diaphragms.

215 citations

Patent
Ella Juha1
01 Oct 1997
TL;DR: In this paper, a method for amplitude modulating signals, and a circuit that operates in accordance with the method is presented, which includes a first step of applying a modulating low frequency signal having a time-varying voltage to a tunable resonator.
Abstract: A method for amplitude modulating signals, and a circuit that operates in accordance with the method. The method includes a first step of applying a modulating low frequency signal having a time-varying voltage to a tunable resonator. The tunable resonator exhibits parallel and series resonances at frequencies which shift as a function of the time-varying voltage. A second step includes applying an RF carrier signal having a frequency that is between the parallel resonant frequency and the series resonant frequency to the tunable resonator. In response thereto, the tunable resonator causes the RF carrier signal to be attenuated as a function of the time-varying voltage of the modulating low frequency signal. Also provided is a method for phase modulating signals, and a circuit that operates in accordance therewith. A first step includes applying a modulating low frequency signal having a time-varying voltage to a tunable resonator. The tunable resonator yields a maximum phase shift at one of a parallel resonant frequency and a series resonant frequency in response to the modulating low frequency signal. The amount of phase shift yielded is a function of a variation of the modulating low frequency signal voltage. A further step includes applying an RF carrier signal having a frequency that is substantially equal to the one of a parallel resonant frequency and a series resonant frequency. In response thereto, the tunable resonator phase shifts the RF carrier signal by the amount of phase shift yielded by the tunable resonator.

202 citations

Patent
Juha Ellä1
13 Mar 1997
TL;DR: In this article, a bulk acoustic wave (BAW) filter with an acoustic mirror is presented, which is used to isolate acoustic vibrations produced by the resonator from reaching beyond an upper surface of the acoustic mirror.
Abstract: A Bulk Acoustic Wave (BAW) filter, comprising at least one resonator structure that is disposed over a substrate, and an acoustic mirror that is disposed over the resonator structure. The acoustic mirror includes a plurality of layers. The acoustic mirror substantially isolates acoustic vibrations produced by the resonator from reaching beyond an upper surface of the acoustic mirror. The acoustic mirror also prevents environmental contaminants from coming into contact with the resonator. Also disclosed are surface-mountable BAW components.

198 citations

References
More filters