scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pitch-rotational manipulation of single cells and particles using single-beam thermo-optical tweezers.

01 Jul 2020-Biomedical Optics Express (The Optical Society)-Vol. 11, Iss: 7, pp 3555-3566
TL;DR: In this article, the authors used hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam.
Abstract: 3D pitch rotation of microparticles and cells assumes importance in a wide variety of applications in biology, physics, chemistry and medicine. Applications such as cell imaging and injection benefit from pitch-rotational manipulation. Generation of such motion in single beam optical tweezers has remained elusive due to the complexities of generating high enough ellipticity perpendicular to the direction of propagation. Further, trapping a perfectly spherical object at two locations and subsequent pitch rotation hasn’t yet been demonstrated to be possible. Here, we use hexagonal-shaped upconverting particles and single cells trapped close to a gold-coated glass cover slip in a sample chamber to generate complete 360 degree and continuous pitch motion even with a single optical tweezer beam. The tweezers beam passing through the gold surface is partially absorbed and generates a hot-spot to produce circulatory convective flows in the vicinity which rotates the objects. The rotation rate can be controlled by the intensity of the laser light. Thus such a simple configuration can turn the particle in the pitch sense. The circulatory flows in this technique have a diameter of about 5 μm which is smaller than those reported using acousto-fluidic techniques.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers, which can either become aligned with the plane of polarization or spin with constant rotation frequency.
Abstract: Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams or beams with helical phase structure. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 1936, when he reported a tiny torque developed in a quartz waveplate due to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating. We have observed rotation rates in excess of 350 Hz.

129 citations

Journal ArticleDOI
TL;DR: A review of heat-mediated optical manipulation can be found in this paper, where the authors highlight major working mechanisms underpinning a variety of manipulation techniques and discuss working modes, capabilities, and applications for each technique.
Abstract: Progress in optical manipulation has stimulated remarkable advances in a wide range of fields, including materials science, robotics, medical engineering, and nanotechnology. This Review focuses on an emerging class of optical manipulation techniques, termed heat-mediated optical manipulation. In comparison to conventional optical tweezers that rely on a tightly focused laser beam to trap objects, heat-mediated optical manipulation techniques exploit tailorable optothermo-matter interactions and rich mass transport dynamics to enable versatile control of matter of various compositions, shapes, and sizes. In addition to conventional tweezing, more distinct manipulation modes, including optothermal pulling, nudging, rotating, swimming, oscillating, and walking, have been demonstrated to enhance the functionalities using simple and low-power optics. We start with an introduction to basic physics involved in heat-mediated optical manipulation, highlighting major working mechanisms underpinning a variety of manipulation techniques. Next, we categorize the heat-mediated optical manipulation techniques based on different working mechanisms and discuss working modes, capabilities, and applications for each technique. We conclude this Review with our outlook on current challenges and future opportunities in this rapidly evolving field of heat-mediated optical manipulation.

33 citations

Journal ArticleDOI
TL;DR: In this article , a tri-directional symmetrical acoustic tweezers device was proposed for the precise manipulation of linear, clockwise, and anticlockwise trajectories of microparticles.
Abstract: Acoustic tweezers based on travelling surface acoustic waves (TSAWs) have the potential for contactless trajectory manipulation and motion-parameter regulation of microparticles in biological and microfluidic applications. Here, we present a novel design of a tri-directional symmetrical acoustic tweezers device that enables the precise manipulation of linear, clockwise, and anticlockwise trajectories of microparticles. By switching the excitation combinations of interdigital electrodes (IDTs), various shape patterns of acoustic pressure fields can be formed to capture and steer microparticles accurately according to pre-defined trajectories. Numerical simulations and experimental tests were conducted in this study. By adjusting the input electric signals and the fluid's viscosity, the device is able to manipulate microparticles of various forms as well as brine shrimp egg cells with the accurate modulation of motion parameters. The results show that the proposed programmable design possesses low-cost, compact, non-contact, and high biocompatibility benefits, with the capacity to accurately manage microparticles in a range of motion trajectories, independent of their physical and/or chemical characteristics. Thus, our design has strong potential applications in chemical composition analysis, drug delivery, and cell assembly.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that if a birefringent particle is confined in linearly polarized optical tweezers, and then the surface is moved in the direction tangential to the plane, a rolling motion can be induced.
Abstract: Conventionally, the work of adhesion at the nanoscale is estimated using an atomic force microscope with a tip of the size of 10 nm. It is pressed into a surface with nano-Newton forces and then retracted to ascertain when the tip breaks away from the surface. Thus this ensures “hard probing” of a surface. However there can be another configuration where the particle is barely placed into the surface when the work of adhesion attaches the particle to the surface and this can be called “soft probing”. In this configuration, if a birefringent particle is confined in linearly polarized optical tweezers, and then the surface is moved in the direction tangential to the plane, a rolling motion can be induced. Study of this rolling motion can also show the work of adhesion. We use this configuration to find the rolling work of adhesion of a 3 μm diameter birefringent particle on a glass surface. We go on to study the effects of changing the surface to a hydrophobic slippery surface like polydimethyl siloxane (PDMS). Then we go on to show that even 500 nm diameter diamonds bearing nitrogen vacancy (NV) centers which are birefringent due to the stresses on the crystal could also be trapped and rolled to generate pitch (out-of-plane rotation) motion with 50 nm contact diameters. We find that this mode of soft probing yields a work of adhesion of about 1 mJ m−2 while the conventional nanoscale probing with atomic force microscopes (AFM) yields about 50 mJ m−2.

13 citations

Journal ArticleDOI
TL;DR: Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails as discussed by the authors , and have been employed in a broad range of applications in the life sciences, physics, and engineering.
Abstract: Optical tweezers are tools made of light that enable contactless pushing, trapping, and manipulation of objects, ranging from atoms to space light sails. Since the pioneering work by Arthur Ashkin in the 1970s, optical tweezers have evolved into sophisticated instruments and have been employed in a broad range of applications in the life sciences, physics, and engineering. These include accurate force and torque measurement at the femtonewton level, microrheology of complex fluids, single micro- and nano-particle spectroscopy, single-cell analysis, and statistical-physics experiments. This roadmap provides insights into current investigations involving optical forces and optical tweezers from their theoretical foundations to designs and setups. It also offers perspectives for applications to a wide range of research fields, from biophysics to space exploration.

12 citations

References
More filters
Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Abstract: Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

4,647 citations

Journal ArticleDOI
16 Nov 2000-Nature
TL;DR: A reusable library of bacterial clones is constructed that will permit unlimited RNAi screens in the future and should help develop a more complete view of the relationships between the genome, gene function and the environment.
Abstract: Complete genomic sequence is known for two multicellular eukaryotes, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster , and it will soon be known for humans. However, biological function has been assigned to only a small proportion of the predicted genes in any animal. Here we have used RNA-mediated interference (RNAi) to target nearly 90% of predicted genes on C. elegans chromosome I by feeding worms with bacteria that express double-stranded RNA. We have assigned function to 13.9% of the genes analysed, increasing the number of sequenced genes with known phenotypes on chromosome I from 70 to 378. Although most genes with sterile or embryonic lethal RNAi phenotypes are involved in basal cell metabolism, many genes giving post-embryonic phenotypes have conserved sequences but unknown function. In addition, conserved genes are significantly more likely to have an RNAi phenotype than are genes with no conservation. We have constructed a reusable library of bacterial clones that will permit unlimited RNAi screens in the future; this should help develop a more complete view of the relationships between the genome, gene function and the environment.

1,792 citations

Journal ArticleDOI
01 Jan 1998-Nature
TL;DR: In this article, an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers, which can be held in three-dimensional optical traps at very high power without heating.
Abstract: Light-induced rotation of absorbing microscopic particles by transfer of angular momentum from light to the material raises the possibility of optically driven micromachines. The phenomenon has been observed using elliptically polarized laser beams1 or beams with helical phase structure2,3. But it is difficult to develop high power in such experiments because of overheating and unwanted axial forces, limiting the achievable rotation rates to a few hertz. This problem can in principle be overcome by using transparent particles, transferring angular momentum by a mechanism first observed by Beth in 19364, when he reported a tiny torque developed in a quartz ‘wave-plate’ owing to the change in polarization of transmitted light. Here we show that an optical torque can be induced on microscopic birefringent particles of calcite held by optical tweezers5. Depending on the polarization of the incident beam, the particles either become aligned with the plane of polarization (and thus can be rotated through specified angles) or spin with constant rotation frequency. Because these microscopic particles are transparent, they can be held in three-dimensional optical traps at very high power without heating, leading to rotation rates of over 350 Hz.

913 citations

Journal ArticleDOI
TL;DR: It is demonstrated that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory and the associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement.
Abstract: Combining extensive single particle tracking microscopy data of endogenous lipid granules in living fission yeast cells with analytical results we show evidence for anomalous diffusion and weak ergodicity breaking. Namely we demonstrate that at short times the granules perform subdiffusion according to the laws of continuous time random walk theory. The associated violation of ergodicity leads to a characteristic turnover between two scaling regimes of the time averaged mean squared displacement. At longer times the granule motion is consistent with fractional Brownian motion.

587 citations

Journal ArticleDOI
TL;DR: An apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped and is ideal for the study of known biological molecular motors is described.
Abstract: We describe an apparatus that can measure the instantaneous angular displacement and torque applied to a quartz particle which is angularly trapped. Torque is measured by detecting the change in angular momentum of the transmitted trap beam. The rotational Brownian motion of the trapped particle and its power spectral density are used to determine the angular trap stiffness. The apparatus features a feedback control that clamps torque or other rotational quantities. The torque sensitivity demonstrated is ideal for the study of known biological molecular motors.

360 citations