scispace - formally typeset
Open AccessJournal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +262 more
Reads0
Chats0
TLDR
In this paper, the authors present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter LCDM cosmology.
Abstract
We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the addition of tensor modes and to changes in the matter content of the Universe. We find a 95% upper limit of r<0.11 on the tensor-to-scalar ratio. There is no evidence for additional neutrino-like relativistic particles. Using BAO and CMB data, we find N_eff=3.30+/-0.27 for the effective number of relativistic degrees of freedom, and an upper limit of 0.23 eV for the summed neutrino mass. Our results are in excellent agreement with big bang nucleosynthesis and the standard value of N_eff=3.046. We find no evidence for dynamical dark energy. Despite the success of the standard LCDM model, this cosmology does not provide a good fit to the CMB power spectrum at low multipoles, as noted previously by the WMAP team. While not of decisive significance, this is an anomaly in an otherwise self-consistent analysis of the Planck temperature data.

read more

Citations
More filters
Journal ArticleDOI

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more
TL;DR: In this paper, the authors present results based on full-mission Planck observations of temperature and polarization anisotropies of the CMB, which are consistent with the six-parameter inflationary LCDM cosmology.
Journal ArticleDOI

Planck 2013 results. XVI. Cosmological parameters

Peter A. R. Ade, +327 more
TL;DR: In this paper, the authors present the first cosmological results based on Planck measurements of the cosmic microwave background (CMB) temperature and lensing-potential power spectra, which are extremely well described by the standard spatially-flat six-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations.
Journal ArticleDOI

Big-Bang Nucleosynthesis

TL;DR: In this article, a critical review of the current status of cosmological nucleosynthesis is given, where the baryon-to-photon ratio of deuterium and helium-4 is consistent with the independent determination of $\eta$ from observations of anisotropies in the cosmic microwave background.
Journal ArticleDOI

Planck 2018 results. VI. Cosmological parameters

Nabila Aghanim, +232 more
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Journal ArticleDOI

Planck 2015 results. XX. Constraints on inflation

TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
References
More filters
Journal ArticleDOI

Massive neutrinos and cosmology

TL;DR: In this paper, the authors describe how free-streaming massive neutrinos affect the evolution of cosmological perturbations, and summarize the current bounds on the sum of neutrino masses that can be derived from various combinations of data, including the most recent analysis by the WMAP team.
Journal ArticleDOI

Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code

TL;DR: In this article, Monte Python is used to obtain robust bounds on the effective neutrino number and neutrinos mass, showing no hints for extra relativistic degrees of freedom, and proving in a robust way that neutinos experienced their non-relativistic transition after the time of photon decoupling.
Posted Content

The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview

TL;DR: This overview presents the general principles of CLASS, a new accurate Boltzmann code designed to offer a more user-friendly and flexible coding environment to cosmologists, and insists on the friendliness and flexibility aspects.
Related Papers (5)

Planck 2015 results. XIII. Cosmological parameters

Peter A. R. Ade, +260 more