scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Planck 2015 results - XIII. Cosmological parameters

Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
01 Oct 2016-Astronomy and Astrophysics (EDP Sciences)-Vol. 594, pp 1-63
TL;DR: In this article, the authors present a cosmological analysis based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation.
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1131 moreInstitutions (123)
TL;DR: The association of GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts.
Abstract: On August 17, 2017 at 12∶41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0×10^{4} years. We infer the component masses of the binary to be between 0.86 and 2.26 M_{⊙}, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M_{⊙}, with the total mass of the system 2.74_{-0.01}^{+0.04}M_{⊙}. The source was localized within a sky region of 28 deg^{2} (90% probability) and had a luminosity distance of 40_{-14}^{+8} Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the γ-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short γ-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology.

7,327 citations

Journal ArticleDOI
Nabila Aghanim1, Yashar Akrami2, Yashar Akrami3, Yashar Akrami4  +229 moreInstitutions (70)
TL;DR: In this article, the authors present cosmological parameter results from the full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction.
Abstract: We present cosmological parameter results from the final full-mission Planck measurements of the cosmic microwave background (CMB) anisotropies, combining information from the temperature and polarization maps and the lensing reconstruction Compared to the 2015 results, improved measurements of large-scale polarization allow the reionization optical depth to be measured with higher precision, leading to significant gains in the precision of other correlated parameters Improved modelling of the small-scale polarization leads to more robust constraints on manyparameters,withresidualmodellinguncertaintiesestimatedtoaffectthemonlyatthe05σlevelWefindgoodconsistencywiththestandard spatially-flat6-parameter ΛCDMcosmologyhavingapower-lawspectrumofadiabaticscalarperturbations(denoted“base ΛCDM”inthispaper), from polarization, temperature, and lensing, separately and in combination A combined analysis gives dark matter density Ωch2 = 0120±0001, baryon density Ωbh2 = 00224±00001, scalar spectral index ns = 0965±0004, and optical depth τ = 0054±0007 (in this abstract we quote 68% confidence regions on measured parameters and 95% on upper limits) The angular acoustic scale is measured to 003% precision, with 100θ∗ = 10411±00003Theseresultsareonlyweaklydependentonthecosmologicalmodelandremainstable,withsomewhatincreasederrors, in many commonly considered extensions Assuming the base-ΛCDM cosmology, the inferred (model-dependent) late-Universe parameters are: HubbleconstantH0 = (674±05)kms−1Mpc−1;matterdensityparameterΩm = 0315±0007;andmatterfluctuationamplitudeσ8 = 0811±0006 We find no compelling evidence for extensions to the base-ΛCDM model Combining with baryon acoustic oscillation (BAO) measurements (and consideringsingle-parameterextensions)weconstraintheeffectiveextrarelativisticdegreesoffreedomtobe Neff = 299±017,inagreementwith the Standard Model prediction Neff = 3046, and find that the neutrino mass is tightly constrained toPmν < 012 eV The CMB spectra continue to prefer higher lensing amplitudesthan predicted in base ΛCDM at over 2σ, which pulls some parameters that affect thelensing amplitude away from the ΛCDM model; however, this is not supported by the lensing reconstruction or (in models that also change the background geometry) BAOdataThejointconstraintwithBAOmeasurementsonspatialcurvatureisconsistentwithaflatuniverse, ΩK = 0001±0002Alsocombining with Type Ia supernovae (SNe), the dark-energy equation of state parameter is measured to be w0 = −103±003, consistent with a cosmological constant We find no evidence for deviations from a purely power-law primordial spectrum, and combining with data from BAO, BICEP2, and Keck Array data, we place a limit on the tensor-to-scalar ratio r0002 < 006 Standard big-bang nucleosynthesis predictions for the helium and deuterium abundances for the base-ΛCDM cosmology are in excellent agreement with observations The Planck base-ΛCDM results are in good agreement with BAO, SNe, and some galaxy lensing observations, but in slight tension with the Dark Energy Survey’s combined-probe results including galaxy clustering (which prefers lower fluctuation amplitudes or matter density parameters), and in significant, 36σ, tension with local measurements of the Hubble constant (which prefer a higher value) Simple model extensions that can partially resolve these tensions are not favoured by the Planck data

4,688 citations

Journal ArticleDOI
Adrian M. Price-Whelan1, B. M. Sipőcz1, Hans Moritz Günther1, P. L. Lim1, Steven M. Crawford1, S. Conseil1, D. L. Shupe1, M. W. Craig1, N. Dencheva1, Adam Ginsburg1, Jacob T VanderPlas1, Larry Bradley1, David Pérez-Suárez1, M. de Val-Borro1, T. L. Aldcroft1, Kelle L. Cruz1, Thomas P. Robitaille1, E. J. Tollerud1, C. Ardelean1, Tomáš Babej1, Y. P. Bach1, Matteo Bachetti1, A. V. Bakanov1, Steven P. Bamford1, Geert Barentsen1, Pauline Barmby1, Andreas Baumbach1, Katherine Berry1, F. Biscani1, Médéric Boquien1, K. A. Bostroem1, L. G. Bouma1, G. B. Brammer1, E. M. Bray1, H. Breytenbach1, H. Buddelmeijer1, D. J. Burke1, G. Calderone1, J. L. Cano Rodríguez1, Mihai Cara1, José Vinícius de Miranda Cardoso1, S. Cheedella1, Y. Copin1, Lia Corrales1, Devin Crichton1, D. DÁvella1, Christoph Deil1, É. Depagne1, J. P. Dietrich1, Axel Donath1, M. Droettboom1, Nicholas Earl1, T. Erben1, Sebastien Fabbro1, Leonardo Ferreira1, T. Finethy1, R. T. Fox1, Lehman H. Garrison1, S. L. J. Gibbons1, Daniel A. Goldstein1, Ralf Gommers1, Johnny P. Greco1, P. Greenfield1, A. M. Groener1, Frédéric Grollier1, A. Hagen1, P. Hirst1, Derek Homeier1, Anthony Horton1, Griffin Hosseinzadeh1, L. Hu1, J. S. Hunkeler1, Ž. Ivezić1, A. Jain1, T. Jenness1, G. Kanarek1, Sarah Kendrew1, Nicholas S. Kern1, Wolfgang Kerzendorf1, A. Khvalko1, J. King1, D. Kirkby1, A. M. Kulkarni1, Ashok Kumar1, Antony Lee1, D. Lenz1, S. P. Littlefair1, Zhiyuan Ma1, D. M. Macleod1, M. Mastropietro1, C. McCully1, S. Montagnac1, Brett M. Morris1, M. Mueller1, Stuart Mumford1, D. Muna1, Nicholas A. Murphy1, Stefan Nelson1, G. H. Nguyen1, Joe Philip Ninan1, M. Nöthe1, S. Ogaz1, Seog Oh1, J. K. Parejko1, N. R. Parley1, Sergio Pascual1, R. Patil1, A. A. Patil1, A. L. Plunkett1, Jason X. Prochaska1, T. Rastogi1, V. Reddy Janga1, J. Sabater1, Parikshit Sakurikar1, Michael Seifert1, L. E. Sherbert1, H. Sherwood-Taylor1, A. Y. Shih1, J. Sick1, M. T. Silbiger1, Sudheesh Singanamalla1, Leo Singer1, P. H. Sladen1, K. A. Sooley1, S. Sornarajah1, Ole Streicher1, P. Teuben1, Scott Thomas1, Grant R. Tremblay1, J. Turner1, V. Terrón1, M. H. van Kerkwijk1, A. de la Vega1, Laura L. Watkins1, B. A. Weaver1, J. Whitmore1, Julien Woillez1, Victor Zabalza1, Astropy Contributors1 
TL;DR: The Astropy project as discussed by the authors is a Python project supporting the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community, including the core package astropy.
Abstract: The Astropy Project supports and fosters the development of open-source and openly developed Python packages that provide commonly needed functionality to the astronomical community. A key element of the Astropy Project is the core package astropy, which serves as the foundation for more specialized projects and packages. In this article, we provide an overview of the organization of the Astropy project and summarize key features in the core package, as of the recent major release, version 2.0. We then describe the project infrastructure designed to facilitate and support development for a broader ecosystem of interoperable packages. We conclude with a future outlook of planned new features and directions for the broader Astropy Project.

4,044 citations

Journal ArticleDOI
Peter A. R. Ade, Nabila Aghanim, Monique Arnaud, Frederico Arroja, M. Ashdown, J. Aumont, Carlo Baccigalupi, Mario Ballardini, A. J. Banday, R. B. Barreiro, Nicola Bartolo, E. Battaner, K. Benabed, Alain Benoit, A. Benoit-Lévy, J.-P. Bernard, Marco Bersanelli, P. Bielewicz, J. J. Bock, Anna Bonaldi, Laura Bonavera, J. R. Bond, Julian Borrill, François R. Bouchet, F. Boulanger, M. Bucher, Carlo Burigana, R. C. Butler, Erminia Calabrese, Jean-François Cardoso, A. Catalano, Anthony Challinor, A. Chamballu, R.-R. Chary, H. C. Chiang, P. R. Christensen, Sarah E. Church, David L. Clements, S. Colombi, L. P. L. Colombo, C. Combet, D. Contreras, F. Couchot, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, Luigi Danese, R. D. Davies, R. J. Davis, P. de Bernardis, A. de Rosa, G. de Zotti, Jacques Delabrouille, F.-X. Désert, Jose M. Diego, H. Dole, S. Donzelli, Olivier Doré, Marian Douspis, A. Ducout, X. Dupac, George Efstathiou, F. Elsner, Torsten A. Ensslin, H. K. Eriksen, James R. Fergusson, Fabio Finelli, Olivier Forni, M. Frailis, Aurelien A. Fraisse, E. Franceschi, A. Frejsel, Andrei V. Frolov, S. Galeotta, Silvia Galli, K. Ganga, C. Gauthier, M. Giard, Y. Giraud-Héraud, E. Gjerløw, J. González-Nuevo, Krzysztof M. Gorski, Serge Gratton, A. Gregorio, Alessandro Gruppuso, Jon E. Gudmundsson, Jan Hamann, Will Handley, F. K. Hansen, Duncan Hanson, D. L. Harrison, Sophie Henrot-Versille, C. Hernández-Monteagudo, D. Herranz, S. R. Hildebrandt, E. Hivon, Michael P. Hobson, W. A. Holmes 
TL;DR: In this article, the authors report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements, which are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles.
Abstract: We report on the implications for cosmic inflation of the 2018 Release of the Planck CMB anisotropy measurements. The results are fully consistent with the two previous Planck cosmological releases, but have smaller uncertainties thanks to improvements in the characterization of polarization at low and high multipoles. Planck temperature, polarization, and lensing data determine the spectral index of scalar perturbations to be $n_\mathrm{s}=0.9649\pm 0.0042$ at 68% CL and show no evidence for a scale dependence of $n_\mathrm{s}.$ Spatial flatness is confirmed at a precision of 0.4% at 95% CL with the combination with BAO data. The Planck 95% CL upper limit on the tensor-to-scalar ratio, $r_{0.002}<0.10$, is further tightened by combining with the BICEP2/Keck Array BK15 data to obtain $r_{0.002}<0.056$. In the framework of single-field inflationary models with Einstein gravity, these results imply that: (a) slow-roll models with a concave potential, $V" (\phi) < 0,$ are increasingly favoured by the data; and (b) two different methods for reconstructing the inflaton potential find no evidence for dynamics beyond slow roll. Non-parametric reconstructions of the primordial power spectrum consistently confirm a pure power law. A complementary analysis also finds no evidence for theoretically motivated parameterized features in the Planck power spectrum, a result further strengthened for certain oscillatory models by a new combined analysis that includes Planck bispectrum data. The new Planck polarization data provide a stringent test of the adiabaticity of the initial conditions. The polarization data also provide improved constraints on inflationary models that predict a small statistically anisotropic quadrupolar modulation of the primordial fluctuations. However, the polarization data do not confirm physical models for a scale-dependent dipolar modulation.

3,438 citations

Journal ArticleDOI
TL;DR: A binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors.
Abstract: On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of $\sim 1.7\,{\rm{s}}$ with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of ${40}_{-8}^{+8}$ Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 $\,{M}_{\odot }$. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at $\sim 40\,{\rm{Mpc}}$) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient's position $\sim 9$ and $\sim 16$ days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta.

2,746 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmology data sets.
Abstract: We present cosmological parameter constraints based on the final nine-year WMAP data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter CDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background (CMB) anisotropy, the baryon acoustic oscillation (BAO) scale, and the Hubble constant, the matter and energy densities, bh 2 , ch 2 , and , are each determined to a precision of 1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5 level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional CDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their CDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r < 0.13 (95% CL); the spatial curvature parameter is limited to k = 0.0027 +0.0039 0.0038 ; the summed mass of neutrinos is limited to P m < 0.44 eV (95% CL); and the number of relativistic species is found to lie within Ne = 3.84±0.40, when the full data are analyzed. The joint constraint on Ne and the primordial helium abundance, YHe, agrees with the prediction of standard Big Bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev‐Zel’dovich eect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe. Subject headings: cosmic microwave background, cosmology: observations, early universe, dark matter, space vehicles, space vehicles: instruments, instrumentation: detectors, telescopes

5,488 citations

Journal ArticleDOI
TL;DR: The review as discussed by the authors summarizes much of particle physics and cosmology using data from previous editions, plus 3,283 new measurements from 899 Japers, including the recently discovered Higgs boson, leptons, quarks, mesons and baryons.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,283 new measurements from 899 Japers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as heavy neutrinos, supersymmetric and technicolor particles, axions, dark photons, etc. All the particle properties and search limits are listed in Summary Tables. We also give numerous tables, figures, formulae, and reviews of topics such as Supersymmetry, Extra Dimensions, Particle Detectors, Probability, and Statistics. Among the 112 reviews are many that are new or heavily revised including those on: Dark Energy, Higgs Boson Physics, Electroweak Model, Neutrino Cross Section Measurements, Monte Carlo Neutrino Generators, Top Quark, Dark Matter, Dynamical Electroweak Symmetry Breaking, Accelerator Physics of Colliders, High-Energy Collider Parameters, Big Bang Nucleosynthesis, Astrophysical Constants and Cosmological Parameters.

5,459 citations

Journal ArticleDOI
TL;DR: In this article, a critical review of the current status of cosmological nucleosynthesis is given, where the baryon-to-photon ratio of deuterium and helium-4 is consistent with the independent determination of $\eta$ from observations of anisotropies in the cosmic microwave background.
Abstract: A critical review is given of the current status of cosmological nucleosynthesis. In the framework of the Standard Model with 3 types of relativistic neutrinos, the baryon-to-photon ratio, $\eta$, corresponding to the inferred primordial abundances of deuterium and helium-4 is consistent with the independent determination of $\eta$ from observations of anisotropies in the cosmic microwave background. However the primordial abundance of lithium-7 inferred from observations is significantly below its expected value. Taking systematic uncertainties in the abundance estimates into account, there is overall concordance in the range $\eta = (5.7-6.7)\times 10^{-10}$ at 95% CL (corresponding to a cosmological baryon density $\Omega_B h^2 = 0.021 - 0.025$). The D and He-4 abundances, when combined with the CMB determination of $\eta$, provide the bound $N_ u=3.28 \pm 0.28$ on the effective number of neutrino species. Other constraints on new physics are discussed briefly.

5,144 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey, which are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps.
Abstract: We present full sky microwave maps in five frequency bands (23 to 94 GHz) from the WMAP first year sky survey. Calibration errors are less than 0.5% and the low systematic error level is well specified. The cosmic microwave background (CMB) is separated from the foregrounds using multifrequency data. The sky maps are consistent with the 7 in. full-width at half-maximum (FWHM) Cosmic Background Explorer (COBE) maps. We report more precise, but consistent, dipole and quadrupole values. The CMB anisotropy obeys Gaussian statistics with -58 less than f(sub NL) less than 134 (95% CL). The 2 less than or = l less than or = 900 anisotropy power spectrum is cosmic variance limited for l less than 354 with a signal-to-noise ratio greater than 1 per mode to l = 658. The temperature-polarization cross-power spectrum reveals both acoustic features and a large angle correlation from reionization. The optical depth of reionization is tau = 0.17 +/- 0.04, which implies a reionization epoch of t(sub r) = 180(sup +220, sub -80) Myr (95% CL) after the Big Bang at a redshift of z(sub r) = 20(sup +10, sub -9) (95% CL) for a range of ionization scenarios. This early reionization is incompatible with the presence of a significant warm dark matter density. A best-fit cosmological model to the CMB and other measures of large scale structure works remarkably well with only a few parameters. The age of the best-fit universe is t(sub 0) = 13.7 +/- 0.2 Gyr old. Decoupling was t(sub dec) = 379(sup +8, sub -7)kyr after the Big Bang at a redshift of z(sub dec) = 1089 +/- 1. The thickness of the decoupling surface was Delta(sub z(sub dec)) = 195 +/- 2. The matter density of the universe is Omega(sub m)h(sup 2) = 0.135(sup +0.008, sub -0.009) the baryon density is Omega(sub b)h(sup 2) = 0.0224 +/- 0.0009, and the total mass-energy of the universe is Omega(sub tot) = 1.02 +/- 0.02. There is progressively less fluctuation power on smaller scales, from WMAP to fine scale CMB measurements to galaxies and finally to the Ly-alpha forest. This is accounted for with a running spectral index, significant at the approx. 2(sigma) level. The spectral index of scalar fluctuations is fit as n(sub s) = 0.93 +/-0.03 at wavenumber k(sub o) = 0.05/Mpc ((sub eff) approx. = 700), with a slope of dn(sub s)/d I(sub nk) = -0.031(sup + 0.016, sub -0.018) in the best-fit model.

4,821 citations

Journal ArticleDOI
TL;DR: The Hierarchical Equal Area iso-Latitude Pixelization (HEALPix) as discussed by the authors is a data structure with an associated library of computational algorithms and visualization software that supports fast scientific applications executable directly on very large volumes of astronomical data and large area surveys in the form of discretized spherical maps.
Abstract: HEALPix -- the Hierarchical Equal Area iso-Latitude Pixelization -- is a versatile data structure with an associated library of computational algorithms and visualization software that supports fast scientific applications executable directly on very large volumes of astronomical data and large area surveys in the form of discretized spherical maps. Originally developed to address the data processing and analysis needs of the present generation of cosmic microwave background (CMB) experiments (e.g. BOOMERanG, WMAP), HEALPix can be expanded to meet many of the profound challenges that will arise in confrontation with the observational output of future missions and experiments, including e.g. Planck, Herschel, SAFIR, and the Beyond Einstein CMB polarization probe. In this paper we consider the requirements and constraints to be met in order to implement a sufficient framework for the efficient discretization and fast analysis/synthesis of functions defined on the sphere, and summarise how they are satisfied by HEALPix.

4,389 citations

Related Papers (5)