Proceedings Article•
Planning Domain + Execution Semantics: A Way Towards Robust Execution?
01 Jan 2014-
TL;DR: It is shown that the combined used of causal, temporal and categorical knowledge allows the robot to detect failures even when the effects of actions are not directly observable.
Abstract: Robots are expected to carry out complex plans in real world environments. This requires the robot to track the progress of plan execution and detect failures which may occur. Planners use very abstract world models to generate plans. Additional causal, temporal, categorical knowledge about the execution, which is not included in the planner's model, is often avail- able. Can we use this knowledge to increase robustness of execution and provide early failure detection? We propose to use a dedicated Execution Model to monitor the executed plan based on runtime observations and rich execution knowl- edge. We show that the combined used of causal, temporal and categorical knowledge allows the robot to detect failures even when the effects of actions are not directly observable. A dedicated Execution model also introduces a degree of mod- ularity, since the platform- and execution-specific knowledge does not need to be encoded into the planner.
Content maybe subject to copyright Report
Citations
More filters
[...]
TL;DR: Problem in different research areas related to mobile manipulation from the cognitive perspective are outlined, recently published works and the state-of-the-art approaches to address these problems are reviewed, and open problems to be solved are discussed.
Abstract: Service robots are expected to play an important role in our daily lives as our companions in home and work environments in the near future. An important requirement for fulfilling this expectation is to equip robots with skills to perform everyday manipulation tasks, the success of which is crucial for most home chores, such as cooking, cleaning, and shopping. Robots have been used successfully for manipulation tasks in wellstructured and controlled factory environments for decades. Designing skills for robots working in uncontrolled human environments raises many potential challenges in various subdisciplines, such as computer vision, automated planning, and human-robot interaction. In spite of the recent progress in these fields, there are still challenges to tackle. This article outlines problems in different research areas related to mobile manipulation from the cognitive perspective, reviews recently published works and the state-of-the-art approaches to address these problems, and discusses open problems to be solved to realize robot assistants that can be used in manipulation tasks in unstructured human environments.
31 citations
[...]
TL;DR: The general system architecture is introduced and some results in detail regarding hybrid reasoning and planning used in RACE are sketches, and instances of learning from the experiences of real robot task execution are sketched.
Abstract: This paper reports on the aims, the approach, and the results of the European project RACE. The project aim was to enhance the behavior of an autonomous robot by having the robot learn from conceptualized experiences of previous performance, based on initial models of the domain and its own actions in it. This paper introduces the general system architecture; it then sketches some results in detail regarding hybrid reasoning and planning used in RACE, and instances of learning from the experiences of real robot task execution. Enhancement of robot competence is operationalized in terms of performance quality and description length of the robot instructions, and such enhancement is shown to result from the RACE system.
29 citations
Cites background from "Planning Domain + Execution Semanti..."
[...]
[...]
TL;DR: The planner CHIMP is introduced, which is based on meta-CSP planning to represent the hybrid plan space and uses hierarchical planning as the strategy for cutting efficiently through this space.
Abstract: Plan-based robot control has to consider a multitude of aspects of tasks at once, such as task dependency, time, space, and resource usage. Hybrid planning is a strategy for treating them jointly. However, by incorporating all these aspects into a hybrid planner, its search space is huge by construction. This paper introduces the planner CHIMP, which is based on meta-CSP planning to represent the hybrid plan space and uses hierarchical planning as the strategy for cutting efficiently through this space. The paper makes two contributions: First, it describes how HTN planning is integrated into meta-CSP reasoning leading to a planner that can reason about different forms of knowledge and that is fast enough to be used on a robot. Second, it demonstrates CHIMP's task merging capabilities, i.e., the unification of different tasks from different plan parts, resulting in plans that are more efficient to execute. It also allows to merge new tasks online into a plan that is being executed. This is demonstrated on a PR2 robot.
26 citations
Cites background from "Planning Domain + Execution Semanti..."
[...]
[...]
TL;DR: The robot's ontology is extended with concepts for representing human-robot interactions as well as the experiences of the robot, and these experiences are extracted and stored in memory and they are used as input for learning methods.
Abstract: Intelligent service robots should be able to improve their knowledge from accumulated experiences through continuous interaction with the environment, and in particular with humans. A human user may guide the process of experience acquisition, teaching new concepts, or correcting insufficient or erroneous concepts through interaction. This paper reports on work towards interactive learning of objects and robot activities in an incremental and open-ended way. In particular, this paper addresses human-robot interaction and experience gathering. The robot's ontology is extended with concepts for representing human-robot interactions as well as the experiences of the robot. The human-robot interaction ontology includes not only instructor teaching activities but also robot activities to support appropriate feedback from the robot. Two simplified interfaces are implemented for the different types of instructions including the teach instruction, which triggers the robot to extract experiences. These experiences, both in the robot activity domain and in the perceptual domain, are extracted and stored in memory, and they are used as input for learning methods. The functionalities described above are completely integrated in a robot architecture, and are demonstrated in a PR2 robot.
26 citations
[...]
TL;DR: An approach for scene understanding based on qualitative descriptors, domain knowledge and logics is proposed, and promising results were obtained.
Abstract: An approach for scene understanding based on qualitative descriptors, domain knowledge and logics is proposed in this paper. Qualitative descriptors, qualitative models of shape, colour, topology and location are used for describing any object in the scene. Two kinds of domain knowledge are provided: (i) categorizations of objects according to their qualitative descriptors, and (ii) semantics for describing the affordances, mobility and other functional properties of target objects. First order logics are obtained for reasoning and scene understanding. Tests were carried out at the Interact@Cartesium scenario and promising results were obtained.
26 citations
References
More filters
Proceedings Article•
[...]
TL;DR: This paper discusses how ROS relates to existing robot software frameworks, and briefly overview some of the available application software which uses ROS.
Abstract: This paper gives an overview of ROS, an opensource robot operating system. ROS is not an operating system in the traditional sense of process management and scheduling; rather, it provides a structured communications layer above the host operating systems of a heterogenous compute cluster. In this paper, we discuss how ROS relates to existing robot software frameworks, and briefly overview some of the available application software which uses ROS.
7,367 citations
"Planning Domain + Execution Semanti..." refers background in this paper
[...]
[...]
[...]
TL;DR: The procedure was originally programmed in FORTRAN for the Control Data 160 desk-size computer and was limited to te t ra t ion because subroutine recursiveness in CONTROL Data 160 FORTRan has been held down to four levels in the interests of economy.
Abstract: procedure ari thmetic (a, b, c, op); in t eger a, b, c, op; ¢ o n l m e n t This procedure will perform different order ar i thmetic operations with b and c, put t ing the result in a. The order of the operation is given by op. For op = 1 addit ion is performed. For op = 2 multiplicaLion, repeated addition, is done. Beyond these the operations are non-commutat ive. For op = 3 exponentiat ion, repeated multiplication, is done, raising b to the power c. Beyond these the question of grouping is important . The innermost implied parentheses are at the right. The hyper-exponent is always c. For op = 4 te t ra t ion, repeated exponentiat ion, is done. For op = 5, 6, 7, etc., the procedure performs pentat ion, hexation, heptat ion, etc., respectively. The routine was originally programmed in FORTRAN for the Control Data 160 desk-size computer. The original program was limited to te t ra t ion because subroutine recursiveness in Control Data 160 FORTRAN has been held down to four levels in the interests of economy. The input parameter , b, c, and op, must be positive integers, not zero; b e g i n own i n t e g e r d, e, f, drop; i f o p = 1 t h e n b e g i n a := h-4c; go t o l e n d i f o p = 2 t h e n d := 0; else d := 1; e := c; drop := op 1; for f := I s t e p 1 u n t i l e do b e g i n ari thmetic (a, b, d, drop);
3,519 citations
"Planning Domain + Execution Semanti..." refers background in this paper
[...]
[...]
TL;DR: A formalism for reasoning about actions that is based on a temporal logic allows a much wider range of actions to be described than with previous approaches such as the situation calculus and a framework for planning in a dynamic world with external events and multiple agents is suggested.
Abstract: A formalism for reasoning about actions is proposed that is based on a temporal logic. It allows a much wider range of actions to be described than with previous approaches such as the situation calculus. This formalism is then used to characterize the different types of events, processes, actions, and properties that can be described in simple English sentences. In addressing this problem, we consider actions that involve non-activity as well as actions that can only be defined in terms of the beliefs and intentions of the actors. Finally, a framework for planning in a dynamic world with external events and multiple agents is suggested.
2,598 citations
"Planning Domain + Execution Semanti..." refers methods in this paper
[...]
[...]
TL;DR: In this article, a formalism for reasoning about actions is proposed that is based on a temporal logic, which allows a much wider range of actions to be described than with previous approaches such as the situation calculus.
Abstract: A formalism for reasoning about actions is proposed that is based on a temporal logic. It allows a much wider range of actions to be described than with previous approaches such as the situation calculus. This formalism is then used to characterize the different types of events, processes, actions, and properties that can be described in simple English sentences. In addressing this problem, we consider actions that involve non-activity as well as actions that can only be defined in terms of the beliefs and intentions of the actors. Finally, a framework for planning in a dynamic world with external events and multiple agents is suggested.
2,412 citations
[...]
TL;DR: It is shown that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can be solved in polynomial time and the applicability of path consistency algorithms as preprocessing of temporal problems is studied, to demonstrate their termination and bound their complexities.
Abstract: This paper extends network-based methods of constraint satisfaction to include continuous variables, thus providing a framework for processing temporal constraints. In this framework, called temporal constraint satisfaction problem (TCSP), variables represent time points and temporal information is represented by a set of unary and binary constraints, each specifying a set of permitted intervals. The unique feature of this framework lies in permitting the processing of metric information, namely, assessments of time differences between events. We present algorithms for performing the following reasoning tasks: finding all feasible times that a given event can occur, finding all possible relationships between two given events, and generating one or more scenarios consistent with the information provided. We distinguish between simple temporal problems (STPs) and general temporal problems, the former admitting at most one interval constraint on any pair of time points. We show that the STP, which subsumes the major part of Vilain and Kautz's point algebra, can be solved in polynomial time. For general TCSPs, we present a decomposition scheme that performs the three reasoning tasks considered, and introduce a variety of techniques for improving its efficiency. We also study the applicability of path consistency algorithms as preprocessing of temporal problems, demonstrate their termination and bound their complexities.
1,933 citations
"Planning Domain + Execution Semanti..." refers background in this paper
[...]
[...]
[...]
[...]
Related Papers (5)
[...]
[...]
[...]
[...]