scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plant Endophytic Fungus Extract ZNC Improved Potato Immunity, Yield, and Quality.

01 Jan 2021-Frontiers in Plant Science (Frontiers Media S.A.)-Vol. 12, pp 707256
TL;DR: Zhang et al. as discussed by the authors revealed the trade-off balance between plant growth and immunity by evaluating the mechanisms of ZNC on potato growth, yield, and priming immunity against the oomycete Phytophthora infestans indoors and in the field.
Abstract: Endophytic fungi play an important role in plant survival and reproduction, but the role of their metabolites in plant growth and immunity, as well as in crop quality formation, is poorly understood. Zhinengcong (ZNC) is a crude ethanol extract from the endophytic fungus Paecilomyces variotii, and previous studies have shown that it can improve the growth and immunity in Arabidopsis thaliana. The aim of the study was to reveal the trade-off balance between plant growth and immunity by evaluating the mechanisms of ZNC on potato growth, yield, and priming immunity against the oomycete Phytophthora infestans indoors and in the field. ZNC maintained a good balance between plant growth and resistance against P. infestans with high activity. It induced the reactive oxygen species (ROS) production, promoted plant growth, yield and quality parameters, enhanced the expression of indoleacetic acid (IAA) related genes, and increased the absorption of nitrogen from the soil. Moreover, the plant endophytic fungus extract ZNC stimulated the pathogen-associated molecular pattern (PAMP) triggered immunity (PTI) pathway and contributed to the ZNC-mediated defense response. Two years of field trials have shown that irrigation with ZNC at one of two optimal concentrations of 1 or 10ng/ml could significantly increase the output by 18.83% or more. The quality of potato tubers was also greatly improved, in which the contents of vitamin C, protein, and starch were significantly increased, especially the sugar content was increased by 125%. Spray application of ZNC onto potato plants significantly reduced the occurrence of potato blight disease with 66.49% of control efficacy at 200ng/ml and increased the potato yield by 66.68% or more in the field. In summary, plant endophytic fungus extract ZNC promoted potato immunity, yield, and quality and presented excellent potential in agricultural applications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: Guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.
Abstract: Rice sheath blight (ShB) caused by Rhizoctonia solani is one of the most destructive diseases in rice. Fungicides are widely used to control ShB in agriculture. However, decades of excessive traditional fungicide use have led to environmental pollution and increased pathogen resistance. Generally, plant elicitors are regarded as environmentally friendly biological pesticides that enhance plant disease resistance by triggering plant immunity. Previously, we identified that the plant immune inducer ZhiNengCong (ZNC), a crude extract of the endophyte, has high activity and a strong ability to protect plants against pathogens. Here, we further found that guanine, which had a significant effect on inducing plant resistance to pathogens, might be an active component of ZNC. In our study, guanine activated bursts of reactive oxygen species, callose deposition and mitogen-activated protein kinase phosphorylation. Moreover, guanine-induced plant resistance to pathogens depends on ethylene and jasmonic acid but is independent of the salicylic acid signaling pathway. Most importantly, guanine functions as a new plant elicitor with broad-spectrum resistance to activate plant immunity, providing an efficient and environmentally friendly biological elicitor for bacterial and fungal disease biocontrol.

9 citations

Journal ArticleDOI
Zhao Li, Keyi Xiong, Weie Wen, Lin Li, Delin Xu 
TL;DR: In this paper , the authors summarize the recent progress in understanding the interaction between endophytes and plants and summarize the construction of synthetic microbial communities (SynComs) and meta-omics analysis of the interaction.
Abstract: Endophytes, which are widely found in host plants and have no harmful effects, are a vital biological resource. Plant endophytes promote plant growth and enhance plants’ resistance to diseases, pests, and environmental stresses. In addition, they enhance the synthesis of important secondary metabolites in plants and improve the potential applicability of plants in agriculture, medicine, food, and horticulture. In this review, we summarize the recent progress in understanding the interaction between endophytes and plants and summarize the construction of synthetic microbial communities (SynComs) and metaomics analysis of the interaction between endophytes and plants. The application and development prospects of endophytes in agriculture, medicine, and other industries are also discussed to provide a reference for further study of the interaction between endophytes and plants and further development and utilization of endophytes.

3 citations

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors used Zhinengcong (ZNC) extract from the endophytic fungus Paecilomyces variotii to improve plant growth and resistance to biotic and abiotic stresses.
Abstract: High temperature negatively affects reproductive process significantly, leading to tremendous losses in crop quality and yield. Zhinengcong (ZNC), a crude extract from the endophytic fungus Paecilomyces variotii, has been shown to improve plant growth and resistance to biotic and abiotic stresses. We show here that ZNC can also alleviate heat stress-induced reproductive defects in Solanum lycopersicum, such as short-term heat-induced inhibition on pollen viability, germination and tube growth, and long-term heat stress-induced pollen developmental defects. We further demonstrated that ZNC alleviates heat stress by downregulating the expressions of ROS production-related genes, RBOHs, and upregulating antioxidant related genes and the activities of the corresponding enzymes, thus preventing the over accumulation of heat-induced reactive oxygen species (ROS) in anther, pollen grain and pollen tube. Furthermore, spraying application of ZNC onto tomato plants under long-term heat stress promotes fruit and seed bearing in the field. In summary, plant endophytic fungus extract ZNC promotes the reproductive process and yield of tomato plants under heat stress and presents excellent potential in agricultural applications.

3 citations

Journal ArticleDOI
TL;DR: In this article , the effects of CDAP combined with ZNC on photosynthesis, enzyme activities, endogenous hormone content, maize yield, and P use efficiency (PUE) were investigated in a pot experiment.
Abstract: Coated diammonium phosphate (CDAP) is intended to release nutrients steadily in response to the demand of crop growth. A novel biostimulant extracted from Paecilomyces variotii has been shown to regulate gene expression in nutrient transport, enhance nitrogen (N) and phosphorus (P) uptake, and improve nutrient use efficiency. The application of CDAP combined with the Paecilomyces variotii extracts (ZNC) in maize is an efficient approach for reducing waste of resources, improving nutrient supply, and maintaining production stability. The effects of CDAP combined with ZNC on photosynthesis, enzyme activities, endogenous hormone content, maize yield, and P use efficiency (PUE) were investigated in this study. In a pot experiment, CDAP and diammonium phosphate (DAP) were tested together with P levels (1.80, 1.44 g pot–1, P2O5) and two ZNC application rates (0, 4.4 μg pot–1), which included the control treatment that had no P fertilizer added. Results showed that the key influencing elements of maize growth and yield were the soil available-P content, endogenous hormone content, and plant photosynthesis in this study. The combination of DAP and ZNC increased the soil available-P content and the auxin content in leaves at the key stage and hence increased the yield and PUE of maize, compared with DAP. The net photosynthetic rate of CDAP combined with ZNC was higher by 23.1% than that of CDAP alone, as well as by 32.0% than that of DAP combined with ZNC. Moreover, the combination of CDAP and ZNC increased the yield and PUE by 8.2% and 15.6 percentage points compared with DAP combined with ZNC while increasing the yield and PUE compared with CDAP. In conclusion, combining CDAP with ZNC as an environmentally friendly fertilizer could improve photosynthesis-related enzyme activity and enhance the net photosynthetic rate, resulting in an increase in maize yield and PUE significantly.

3 citations

Journal ArticleDOI
TL;DR: In this paper , the authors compared the six active ingredients of P. hydropiper and P. lapathifolium in the same soil environment and found significant differences between the community composition of the leaves, stems, and roots of the two species.
Abstract: Polygonum hydropiper, is a plant of the Persicaria genus, which is commonly used to treat various diseases, including gastrointestinal disorders, neurological disorders, inflammation, and diarrhea. However, because of different local standards of P. hydropiper, people often confuse it with Polygonum lapathifolium L. and other closely related plants. This poses a serious threat to the safety and efficacy of the clinical use of P. hydropiper. This study aims to determine the six active ingredients of P. hydropiper and P. lapathifolium. Then the endophytic fungi and rhizosphere soil of the two species were sequenced by Illumina Miseq PE300. The results show significant differences between the community composition of the leaves, stems, and roots of the P. hydropiper and the P. lapathifolium in the same soil environment. Of the six secondary metabolites detected, five had significant differences between P. hydropiper and P. lapathifolium. Then, we evaluated the composition of the significantly different communities between P. hydropiper and P. lapathifolium. In the P. hydropiper, the relative abundance of differential communities in the leaves was highest, of which Cercospora dominated the differential communities in the leaves and stem; in the P. lapathifolium, the relative abundance of differential community in the stem was highest, and Cladosporium dominated the differential communities in the three compartments. By constructing the interaction network of P. hydropiper and P. lapathifolium and analyzing the network nodes, we found that the core community in P. hydropiper accounted for 87.59% of the total community, dominated by Cercospora; the core community of P. lapathifolium accounted for 19.81% of the total community, dominated by Sarocladium. Of these core communities, 23 were significantly associated with active ingredient content. Therefore, we believe that the community from Cercospora significantly interferes with recruiting fungal communities in P. hydropiper and affects the accumulation of secondary metabolites in the host plant. These results provide an essential foundation for the large-scale production of P. hydropiper. They indicate that by colonizing specific fungal communities, secondary metabolic characteristics of host plants can be helped to be shaped, which is an essential means for developing new medicinal plants.
References
More filters
Journal ArticleDOI
Ruslan Medzhitov1
17 Oct 2007-Nature
TL;DR: The mammalian immune system has innate and adaptive components, which cooperate to protect the host against microbial infections, and recent progress brings us closer to an integrated view of the immune system and its function in host defence.
Abstract: The mammalian immune system has innate and adaptive components, which cooperate to protect the host against microbial infections. The innate immune system consists of functionally distinct 'modules' that evolved to provide different forms of protection against pathogens. It senses pathogens through pattern-recognition receptors, which trigger the activation of antimicrobial defences and stimulate the adaptive immune response. The adaptive immune system, in turn, activates innate effector mechanisms in an antigen-specific manner. The connections between the various immune components are not fully understood, but recent progress brings us closer to an integrated view of the immune system and its function in host defence.

2,656 citations

Journal ArticleDOI
TL;DR: A critical overview is provided on how understanding of the physiological and molecular controls of N assimilation under varying environmental conditions in crops has been improved through the use of combined approaches, mainly based on whole-plant physiology, quantitative genetics, and forward and reverse genetics approaches.
Abstract: In this review, recent developments and future prospects of obtaining a better understanding of the regulation of nitrogen use efficiency in the main crop species cultivated in the world are presented. In these crops, an increased knowledge of the regulatory mechanisms controlling plant nitrogen economy is vital for improving nitrogen use efficiency and for reducing excessive input of fertilizers, while maintaining an acceptable yield. Using plants grown under agronomic conditions at low and high nitrogen fertilization regimes, it is now possible to develop whole-plant physiological studies combined with gene, protein, and metabolite profiling to build up a comprehensive picture depicting the different steps of nitrogen uptake, assimilation, and recycling to the final deposition in the seed. A critical overview is provided on how understanding of the physiological and molecular controls of N assimilation under varying environmental conditions in crops has been improved through the use of combined approaches, mainly based on whole-plant physiology, quantitative genetics, and forward and reverse genetics approaches. Current knowledge and prospects for future agronomic development and application for breeding crops adapted to lower fertilizer input are explored, taking into account the world economic and environmental constraints in the next century.

1,161 citations

Journal ArticleDOI
TL;DR: A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes, and a family of trans-acting transcription factors that bind with specificity to AuxREs has been characterized.
Abstract: A molecular approach to investigate auxin signaling in plants has led to the identification of several classes of early/primary auxin response genes. Within the promoters of these genes, cis elements that confer auxin responsiveness (referred to as auxin-response elements or AuxREs) have been defined, and a family of trans-acting transcription factors (auxin-response factors or ARFs) that bind with specificity to AuxREs has been characterized. A family of auxin regulated proteins referred to as Aux/IAA proteins also play a key role in regulating these auxin-response genes. Auxin may regulate transcription on early response genes by influencing the types of interactions between ARFs and Aux/IAAs.

1,109 citations

Journal ArticleDOI
TL;DR: This review will focus on the plant hormone auxin and its action, and highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of Auxin in controlling growth and patterning.
Abstract: Hormones have been at the centre of plant physiology research for more than a century. Research into plant hormones (phytohormones) has at times been considered as a rather vague subject, but the systematic application of genetic and molecular techniques has led to key insights that have revitalized the field. In this review, we will focus on the plant hormone auxin and its action. We will highlight recent mutagenesis and molecular studies, which have delineated the pathways of auxin transport, perception and signal transduction, and which together define the roles of auxin in controlling growth and patterning.

1,063 citations

Journal ArticleDOI
TL;DR: Culture-independent methods for community analysis and functional genomic as well as comparative genomic analyses will provide a better understanding of community dynamics, signaling, and functions in endophyte-plant associations.

661 citations

Related Papers (5)