scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plaque fissuring--the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina.

01 Apr 1985-Heart (BMJ Publishing Group Ltd and British Cardiovascular Society)-Vol. 53, Iss: 4, pp 363-373
TL;DR: This controversy was concerned with whether coronary artery thrombi were or were not directly responsible for all three clinical pictures of acute ischaemia.
Abstract: The clinical management of acute myocardial infarction and crescendo angina as well as the prevention of sudden ischaemic death require accurate knowledge of the underlying arterial pathology. It is on just this aspect that until recently there has been disagreement particularly among pathologists. In brief, this controversy was concerned with whether coronary artery thrombi were or were not directly responsible for all three clinical pictures of acute ischaemia. Resolution of the controversy has been derived from coronary angiography in life in patients with acute infarction and crescendo angina and from detailed pathological studies. These latter studies differ from many carried out previously by the use of postmortem coronary angiography and histological reconstruction of the microanatomy of occlusive lesions.
Citations
More filters
Journal ArticleDOI
TL;DR: This review will reconsider the current paradigm for understanding the critical, final steps in the progression of atherosclerotic lesions, and devise a simpler classification scheme that is consistent with the AHA categories but is easier to use, able to deal with a wide array of morphological variations, and not overly burdened by mechanistic implications.
Abstract: This review will reconsider the current paradigm for understanding the critical, final steps in the progression of atherosclerotic lesions. That scheme, largely an outgrowth of observations of autopsy tissues by Davies and colleagues,1 2 asserts that the cause of death in atherosclerotic coronary artery disease is rupture of an advanced atherosclerotic lesion. Although this assumption may be partially true, recent autopsy studies suggest that it is incomplete. To reconsider this paradigm, we reexamined the morphological classification scheme for lesions proposed by the American Heart Association (AHA).3 4 This scheme is difficult to use for 2 reasons. First, it uses a very long list of roman numerals modified by letter codes that are difficult to remember. Second, it implies an orderly, linear pattern of lesion progression. This tends to be ambiguous, because it is not clear whether there is a single sequence of events during the progression of all lesions. We have therefore tried to devise a simpler classification scheme that is consistent with the AHA categories but is easier to use, able to deal with a wide array of morphological variations, and not overly burdened by mechanistic implications. The current paradigm is based on the belief that type IV lesions, or “atheromas,” described by the AHA are stable because the fatty, necrotic core is contained by a smooth muscle cell–rich fibrous cap. Virchow’s analysis5 in 1858 pointed out that historically, the term “atheroma” refers to a dermal cyst (“Grutzbalg”), a fatty …

3,869 citations

Journal ArticleDOI
TL;DR: The histological classification of human atherosclerotic lesions found in the second part of this report led to the earlier definitions of precursor lesions, and the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes was attempted.
Abstract: This report is the continuation of two earlier reports that defined human arterial intima and precursors of advanced atherosclerotic lesions in humans. This report describes the characteristic components and pathogenic mechanisms of the various advanced atherosclerotic lesions. These, with the earlier definitions of precursor lesions, led to the histological classification of human atherosclerotic lesions found in the second part of this report. The Committee on Vascular Lesions also attempted to correlate the appearance of lesions noted in clinical imaging studies with histological lesion types and corresponding clinical syndromes. In the histological classification, lesions are designated by Roman numerals, which indicate the usual sequence of lesions progression. The initial (type I) lesion contains enough atherogenic lipoprotein to elicit an increase in macrophages and formation of scattered macrophage foam cells. As in subsequent lesion types, the changes are more marked in locations of arteries with adaptive intimal thickening. (Adaptive thickenings, which are present at constant locations in everyone from birth, do not obstruct the lumen and represent adaptations to local mechanical forces). Type II lesions consist primarily of layers of macrophage foam cells and lipid-laden smooth muscle cells and include lesions grossly designated as fatty streaks. Type III is the intermediate stage between type II and type IV (atheroma, a lesion that is potentially symptom-producing). In addition to the lipid-laden cells of type II, type III lesions contain scattered collections of extracellular lipid droplets and particles that disrupt the coherence of some intimal smooth muscle cells. This extracellular lipid is the immediate precursor of the larger, confluent, and more disruptive core of extracellular lipid that characterizes type IV lesions. Beginning around the fourth decade of life, lesions that usually have a lipid core may also contain thick layers of fibrous connective tissue (type V lesion) and/or fissure, hematoma, and thrombus (type VI lesion). Some type V lesions are largely calcified (type Vb), and some consist mainly of fibrous connective tissue and little or no accumulated lipid or calcium (type Vc).

3,698 citations

Journal ArticleDOI
TL;DR: This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.
Abstract: Coronary atherosclerosis is by far the most frequent cause of ischemic heart disease, and plaque disruption with superimposed thrombosis is the main cause of the acute coronary syndromes of unstable angina, myocardial infarction, and sudden death.1 2 3 4 5 Therefore, for event-free survival, the vital question is not why atherosclerosis develops but rather why, after years of indolent growth, it suddenly becomes complicated by life-threatening thrombosis. The composition and vulnerability of plaque rather than its volume or the consequent severity of stenosis produced have emerged as being the most important determinants for the development of the thrombus-mediated acute coronary syndromes; lipid-rich and soft plaques are more dangerous than collagen-rich and hard plaques because they are more unstable and rupture-prone and highly thrombogenic after disruption.6 This review will explore potential mechanisms responsible for the sudden conversion of a stable atherosclerotic plaque to an unstable and life-threatening atherothrombotic lesion—an event known as plaque fissuring, rupture, or disruption.7 8 Atherosclerosis is the result of a complex interaction between blood elements, disturbed flow, and vessel wall abnormality, involving several pathological processes: inflammation, with increased endothelial permeability, endothelial activation, and monocyte recruitment9 10 11 12 13 14 ; growth, with smooth muscle cell (SMC) proliferation, migration, and matrix synthesis15 16 ; degeneration, with lipid accumulation17 18 ; necrosis, possibly related to the cytotoxic effect of oxidized lipid19 ; calcification/ossification, which may represent an active rather than a dystrophic process20 21 ; and thrombosis, with platelet recruitment and fibrin formation.1 22 23 Thrombotic factors may play a role early during atherogenesis, but a flow-limiting thrombus does not develop until mature plaques are present, which is why thrombosis often is classified as a complication rather than a genuine component of atherosclerosis. ### Mature Plaques: Atherosis and Sclerosis As the name atherosclerosis implies, mature …

3,493 citations

Journal ArticleDOI
TL;DR: The term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future and a quantitative method for cumulative risk assessment of vulnerable patients needs to be developed.
Abstract: Atherosclerotic cardiovascular disease results in >19 million deaths annually, and coronary heart disease accounts for the majority of this toll. Despite major advances in treatment of coronary heart disease patients, a large number of victims of the disease who are apparently healthy die suddenly without prior symptoms. Available screening and diagnostic methods are insufficient to identify the victims before the event occurs. The recognition of the role of the vulnerable plaque has opened new avenues of opportunity in the field of cardiovascular medicine. This consensus document concludes the following. (1) Rupture-prone plaques are not the only vulnerable plaques. All types of atherosclerotic plaques with high likelihood of thrombotic complications and rapid progression should be considered as vulnerable plaques. We propose a classification for clinical as well as pathological evaluation of vulnerable plaques. (2) Vulnerable plaques are not the only culprit factors for the development of acute coronary syndromes, myocardial infarction, and sudden cardiac death. Vulnerable blood (prone to thrombosis) and vulnerable myocardium (prone to fatal arrhythmia) play an important role in the outcome. Therefore, the term "vulnerable patient" may be more appropriate and is proposed now for the identification of subjects with high likelihood of developing cardiac events in the near future. (3) A quantitative method for cumulative risk assessment of vulnerable patients needs to be developed that may include variables based on plaque, blood, and myocardial vulnerability. In Part I of this consensus document, we cover the new definition of vulnerable plaque and its relationship with vulnerable patients. Part II of this consensus document focuses on vulnerable blood and vulnerable myocardium and provide an outline of overall risk assessment of vulnerable patients. Parts I and II are meant to provide a general consensus and overviews the new field of vulnerable patient. Recently developed assays (eg, C-reactive protein), imaging techniques (eg, CT and MRI), noninvasive electrophysiological tests (for vulnerable myocardium), and emerging catheters (to localize and characterize vulnerable plaque) in combination with future genomic and proteomic techniques will guide us in the search for vulnerable patients. It will also lead to the development and deployment of new therapies and ultimately to reduce the incidence of acute coronary syndromes and sudden cardiac death. We encourage healthcare policy makers to promote translational research for screening and treatment of vulnerable patients.

2,719 citations


Cites background from "Plaque fissuring--the cause of acut..."

  • ...In the 1980s, Falk [11] and Davies and Thomas [15] used “plaque disruption” synonymously with “plaque rupture....

    [...]

  • ...In the 1980s, Falk [11] and Davies and Thomas [15] used “plaque disruption” synonymously with “plaque rupture.”...

    [...]

Journal ArticleDOI
TL;DR: An "oxidative response to inflammation" model is proposed as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.
Abstract: This review focuses on the role of oxidative processes in atherosclerosis and its resultant cardiovascular events. There is now a consensus that atherosclerosis represents a state of heightened oxidative stress characterized by lipid and protein oxidation in the vascular wall. The oxidative modification hypothesis of atherosclerosis predicts that low-density lipoprotein (LDL) oxidation is an early event in atherosclerosis and that oxidized LDL contributes to atherogenesis. In support of this hypothesis, oxidized LDL can support foam cell formation in vitro, the lipid in human lesions is substantially oxidized, there is evidence for the presence of oxidized LDL in vivo, oxidized LDL has a number of potentially proatherogenic activities, and several structurally unrelated antioxidants inhibit atherosclerosis in animals. An emerging consensus also underscores the importance in vascular disease of oxidative events in addition to LDL oxidation. These include the production of reactive oxygen and nitrogen species by vascular cells, as well as oxidative modifications contributing to important clinical manifestations of coronary artery disease such as endothelial dysfunction and plaque disruption. Despite these abundant data however, fundamental problems remain with implicating oxidative modification as a (requisite) pathophysiologically important cause for atherosclerosis. These include the poor performance of antioxidant strategies in limiting either atherosclerosis or cardiovascular events from atherosclerosis, and observations in animals that suggest dissociation between atherosclerosis and lipoprotein oxidation. Indeed, it remains to be established that oxidative events are a cause rather than an injurious response to atherogenesis. In this context, inflammation needs to be considered as a primary process of atherosclerosis, and oxidative stress as a secondary event. To address this issue, we have proposed an "oxidative response to inflammation" model as a means of reconciling the response-to-injury and oxidative modification hypotheses of atherosclerosis.

2,518 citations


Cites background or methods from "Plaque fissuring--the cause of acut..."

  • ...These features include a large necrotic core of lipid and cellular debris and a thin fibrous cap that is often eccentric (187, 188), prompting concern about mechanical stresses on the fibrous cap....

    [...]

  • ...Using perfusion fixation techniques, Davies and Thomas (188) published a seminal study demonstrating FIG....

    [...]

  • ...Using perfusion fixation techniques, Davies and Thomas (188) published a seminal study demonstrating FIG....

    [...]

  • ...This region of the plaque, coincidentally, is most often the site of plaque rupture based on autopsy studies (188)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Total coronary occlusion is frequent during the early hours of transmural infarction and decreases in frequency during the initial 24 hours, suggesting that coronary spasm or thrombus formation with subsequent recanalization or both may be important in the evolution ofinfarction.
Abstract: To define the prevalence of total coronary occlusion in the hours after transmural myocardial infarction, we used coronary arteriography to study the degree of coronary obstruction in 322 patients admitted within 24 hours of infarction. Total coronary occlusion was observed in 110 of 126 patients (87 per cent) who were evaluated within four hours of the onset of symptoms; this proportion decreased significantly, to 37 of 57 (65 per cent), when patients were studied 12 to 24 hours after the onset of symptoms. Among 59 patients with angiographic features of coronary thrombosis, the thrombus was retrieved by Fogarty catheter in 52 (88 per cent) but was absent in seven (12 per cent false positive). Among an additional 20 patients without angiographic features of thrombosis, a thrombus was discovered in five (25 per cent false negative). Thus, total coronary occlusion is frequent during the early hours of transmural infarction and decreases in frequency during the initial 24 hours, suggesting that coronary spasm or thrombus formation with subsequent recanalization or both may be important in the evolution of infarction.

2,645 citations

Journal ArticleDOI
TL;DR: The results document the presence of a subepicardial zone of ischemic but viable myocardium which is available for pharmacologic or surgical salvage for at least three and perhaps six hours following circumflex occlusion in the dog.
Abstract: Irreversible ischemic myocardial cell injury developes in an increasing number of cells as the duration of coronary occlusion is prolonged. The present study quantitates myocardial necrosis produced by 40 minutes, 3 hours, or 6 hours of temporary circumflex coronary occlusion (CO) followed by 2 to 4 days of reperfusion, or by 24 or 96 hours of permanent circumflex ligation in pentobarbital anesthetized open chest dogs. After 40 minutes of ischemia, myocyte necrosis was subendocardial but with increasing duration of coronary occlusion, irreversible injury progressed as a wavefront toward the subepicardium. Transmural necrosis was 38 +/- 4% after 40 min, 57 +/- 7% after 3 hours, 71 +/- 7% after 6 hours and 85 +/- 2% after 24 hours of ischemic injury. These results document the presence of a subepicardial zone of ischemic but viable myocardium which is available for pharmacologic or surgical salvage for at least three and perhaps six hours following circumflex occlusion in the dog.

1,968 citations

Journal ArticleDOI
TL;DR: The pathologic process in sudden ischemic death involves a rapidly evolving coronary-artery lesion in which plaque fissuring and resultant thrombus formation are present, and these findings have implications for the prevention of sudden cardiac death by antithrombotic therapy.
Abstract: The nature of the pathologic lesion in sudden cardiac ischemic death is in dispute. Among 100 subjects who died of ischemic heart disease in less than six hours, coronary thrombi were found in 74. There was no difference in incidence between those who died in less than 15 minutes, those who died in 15 to 60 minutes, and those who died after one hour. Among 26 cases without an intraluminal thrombus, plaque fissuring was found in 21; thus, in only 5 cases was no acute arterial lesion demonstrated. No intraluminal thrombi were found in age-matched controls. Forty-eight of the 74 thrombi were found at sites of preexisting high-grade stenosis; 14 were found at points of previous stenosis of less than 50 per cent of the diameter of the lumen. Forty-seven per cent of the thrombi were found in the right coronary artery. Only 30 per cent were found in the left anterior descending coronary artery. The pathologic process in sudden ischemic death involves a rapidly evolving coronary-artery lesion in which plaque fissuring and resultant thrombus formation are present. These findings have implications for the prevention of sudden cardiac death by antithrombotic therapy.

1,683 citations

Journal ArticleDOI
TL;DR: The data show that aspirin has a protective effect against acute myocardial infarction in men with unstable angina, and they suggest a similar effect on mortality.
Abstract: We conducted a multicenter, double-blind, placebo-controlled randomized trial of aspirin treatment (324 mg in buffered solution daily) for 12 weeks in 1266 men with unstable angina (625 taking aspirin and 641 placebo). The principal end points were death and acute myocardial infarction diagnosed by the presence of creatine kinase MB or pathologic Q-wave changes on electrocardiograms. The incidence of death or acute myocardial infarction was 51 per cent lower in the aspirin group than in the placebo group: 31 patients (5.0 per cent) as compared with 65 (10.1 per cent); P = 0.0005. Nonfatal acute myocardial infarction was 51 per cent lower in the aspirin group: 21 patients (3.4 per cent) as compared with 44 (6.9 per cent); P = 0.005. The reduction in mortality in the aspirin group was also 51 per cent--10 patients (1.6 per cent) as compared with 21 (3.3 per cent)--although it was not statistically significant; P = 0.054. There was no difference in gastrointestinal symptoms or evidence of blood loss between the treatment and control groups. Our data show that aspirin has a protective effect against acute myocardial infarction in men with unstable angina, and they suggest a similar effect on mortality.

1,671 citations

Journal ArticleDOI
01 Aug 1983-Heart
TL;DR: A severe chronic stenosis seems to be a prerequisite for occlusive thrombus formation, but the thrombotic process itself is triggered by an acute intimal lesion.
Abstract: Ruptured atheromatous plaques were identified by step-sectioning technique as responsible for 40 of 51 recent coronary artery thrombi and 63 larger intimal haemorrhages. The degree of pre-existing luminal narrowing at the site of rupture was decisive for whether plaque rupture caused occlusive thrombosis or just intimal haemorrhage. If the pre-existing stenosis was greater than 90% (histologically determined) then plaque rupture nearly always caused occlusive thrombosis. Clearly indicating the primary role of plaque rupture in thrombus formation were the frequent finding of plaque fragments deeply buried in the centre of the thrombus and the nature of the thrombus at the site of rupture where it consisted predominantly of platelets. Thus, a severe chronic stenosis seems to be a prerequisite for occlusive thrombus formation, but the thrombotic process itself is triggered by an acute intimal lesion.

1,001 citations