scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plasma-assisted ignition and combustion

TL;DR: The use of a thermal equilibrium plasma for combustion control dates back more than a hundred years to the advent of internal combustion (IC) engines and spark ignition systems and the same principles are still applied today to achieve high efficiency in various applications as mentioned in this paper.
About: This article is published in Progress in Energy and Combustion Science.The article was published on 2013-02-01. It has received 789 citations till now. The article focuses on the topics: Ignition system & Spontaneous combustion.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive overview of the progress and the gap in the knowledge of plasma assisted combustion in applications, chemistry, ignition and flame dynamics, experimental methods, diagnostics, kinetic modeling, and discharge control is provided in this paper.

812 citations

Journal ArticleDOI
TL;DR: The 2017 plasmas roadmap as mentioned in this paper is the first update of a planned series of periodic updates of the Plasma Roadmap, which was published by the Journal of Physics D: Applied Physics in 2012.
Abstract: Journal of Physics D: Applied Physics published the first Plasma Roadmap in 2012 consisting of the individual perspectives of 16 leading experts in the various sub-fields of low temperature plasma science and technology. The 2017 Plasma Roadmap is the first update of a planned series of periodic updates of the Plasma Roadmap. The continuously growing interdisciplinary nature of the low temperature plasma field and its equally broad range of applications are making it increasingly difficult to identify major challenges that encompass all of the many sub-fields and applications. This intellectual diversity is ultimately a strength of the field. The current state of the art for the 19 sub-fields addressed in this roadmap demonstrates the enviable track record of the low temperature plasma field in the development of plasmas as an enabling technology for a vast range of technologies that underpin our modern society. At the same time, the many important scientific and technological challenges shared in this roadmap show that the path forward is not only scientifically rich but has the potential to make wide and far reaching contributions to many societal challenges.

677 citations

Journal ArticleDOI
TL;DR: The 2012 plasma road map as mentioned in this paper provides guidance to the field by reviewing the major challenges of low-temperature plasma physics and their many sub-fields, as well as a review of the current state of the art in the field.
Abstract: Low-temperature plasma physics and technology are diverse and interdisciplinary fields. The plasma parameters can span many orders of magnitude and applications are found in quite different areas of daily life and industrial production. As a consequence, the trends in research, science and technology are difficult to follow and it is not easy to identify the major challenges of the field and their many sub-fields. Even for experts the road to the future is sometimes lost in the mist. Journal of Physics D: Applied Physics is addressing this need for clarity and thus providing guidance to the field by this special Review article, The 2012 Plasma Roadmap.

571 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties.
Abstract: The fundamental combustion and emissions properties of advanced biofuels are reviewed, and their impact on engine performance is discussed, in order to guide the selection of optimal conversion routes for obtaining desired fuel combustion properties. Advanced biofuels from second- and third-generation feedstocks can result in significantly reduced life-cycle greenhouse-gas emissions, compared to traditional fossil fuels or first-generation biofuels from food-based feedstocks. These advanced biofuels include alcohols, biodiesel, or synthetic hydrocarbons obtained either from hydrotreatment of oxygenated biofuels or from Fischer–Tropsch synthesis. The engine performance and exhaust pollutant emissions of advanced biofuels are linked to their fundamental combustion properties, which can be modeled using combustion chemical-kinetic mechanisms and surrogate fuel blends. In general, first-generation or advanced biofuels perform well in existing combustion engines, either as blend additives with petro-fuels or as pure “drop-in” replacements. Generally, oxygenated biofuels produce lower intrinsic nitric-oxide and soot emissions than hydrocarbon fuels in fundamental experiments, but engine-test results can be complicated by multiple factors. In order to reduce engine emissions and improve fuel efficiency, several novel technologies, including engines and fuel cells, are being developed. The future fuel requirements for a selection of such novel power-generation technologies, along with their potential performance improvements over existing technologies, are discussed. The trend in the biofuels and transportation industries appears to be moving towards drop-in fuels that require little changes in vehicle or fueling infrastructure, but this comes at a cost of reduced life-cycle efficiencies for the overall alternative-fuel production and utilization system. In the future, fuel-flexible, high-efficiency, and ultra-low-emissions heat-engine and fuel-cell technologies promise to enable consumers to switch to the lowest-cost and cleanest fuel available in their market at any given time. This would also enable society as a whole to maximize its global level of transportation activity, while maintaining urban air quality, within an energy- and carbon-constrained world.

343 citations

Journal ArticleDOI
TL;DR: In this article, a review of the results obtained in the period 2006-2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries, is presented.
Abstract: This review covers the results obtained in the period 2006–2014 in the field of plasma-assisted combustion, and in particular the results on ignition and combustion triggered or sustained by pulsed nanosecond discharges in different geometries. Some benefits of pulsed high voltage discharges for kinetic study and for applications are demonstrated. The necessity of and the possibility of building a particular kinetic mechanism of plasma-assisted ignition and combustion are discussed. The most sensitive regions of parameters for plasma–combustion kinetic mechanisms are selected. A map of the pressure and temperature parameters (P–T diagram) is suggested, to unify the available data on ignition delay times, ignition lengths and densities of intermediate species reported by different authors.

274 citations

References
More filters
Book
01 Oct 1991
TL;DR: In this article, the authors present an overview of the history of electric discharge physics and its application in the field of gas discharging in the presence of longitudinal gradients of charge density.
Abstract: 1. Introduction.- 1.1 What Is the Subject of Gas Discharge Physics.- 1.2 Typical Discharges in a Constant Electric Field.- 1.3 Classification of Discharges.- 1.4 Brief History of Electric Discharge Research.- 1.5 Organization of the Book. Bibliography.- 2. Drift, Energy and Diffusion of Charged Particles in Constant Fields.- 2.1 Drift of Electrons in a Weakly Ionized Gas.- 2.2 Conduction of Ionized Gas.- 2.3 Electron Energy.- 2.4 Diffusion of Electrons.- 2.5 Ions.- 2.6 Ambipolar Diffusion.- 2.7 Electric Current in Plasma in the Presence of Longitudinal Gradients of Charge Density.- 2.8 Hydrodynamic Description of Electrons.- 3. Interaction of Electrons in an Ionized Gas with Oscillating Electric Field and Electromagnetic Waves.- 3.1 The Motion of Electrons in Oscillating Fields.- 3.2 Electron Energy.- 3.3 Basic Equations of Electrodynamics of Continuous Media.- 3.4 High-Frequency Conductivity and Dielectric Permittivity of Plasma.- 3.5 Propagation of Electromagnetic, Waves in Plasmas.- 3.6 Total Reflection of Electromagnetic Waves from Plasma and Plasma Oscillations.- 4. Production and Decay of Charged Particles.- 4.1 Electron Impact Ionization in a Constant Field.- 4.2 Other Ionization Mechanisms.- 4.3 Bulk Recombination.- 4.4 Formation and Decay of Negative Ions.- 4.5 Diffusional Loss of Charges.- 4.6 Electron Emission from Solids.- 4.7 Multiplication of Charges in a Gas via Secondary Emission.- 5. Kinetic Equation for Electrons in a Weakly Ionized Gas Placed in an Electric Field.- 5.1 Description of Electron Processes in Terms of the Velocity Distribution Function.- 5.2 Formulation of the Kinetic Equation.- 5.3 Approximation for the Angular Dependence of the Distribution Function.- 5.4 Equation of the Electron Energy Spectrum.- 5.5 Validity Criteria for the Spectrum Equation.- 5.6 Comparison of Some Conclusions Implied by the Kinetic Equation with the Result of Elementary Theory.- 5.7 Stationary Spectrum of Electrons in a Field in the Case of only Elastic Losses.- 5.8 Numerical Results for Nitrogen and Air.- 5.9 Spatially Nonuniform Fields of Arbitrary Strength.- 6. Electric Probes.- 6.1 Introduction. Electric Circuit.- 6.2 Current-Voltage Characteristic of a Single Probe.- 6.3 Theoretical Foundations of Electronic Current Diagnostics of Rarefied Plasmas.- 6.4 Procedure for Measuring the Distribution Function.- 6.5 Ionic Current to a Probe in Rarefied Plasma.- 6.6 Vacuum Diode Current and Space-Charge Layer Close to a Charged Body.- 6.7 Double Probe.- 6.8 Probe in a High-Pressure Plasma.- 7. Breakdown of Gases in Fields of Various Frequency Ranges.- 7.1 Essential Characteristics of the Phenomenon.- 7.2 Breakdown and Triggering of Self-Sustained Discharge in a Constant Homogeneous Field at Moderately Large Product of Pressure and Discharge Gap Width.- 7.3 Breakdown in Microwave Fields and Interpretation of Experimental Data Using the Elementary Theory.- 7.4 Calculation of Ionization Frequencies and Breakdown Thresholds Using the Kinetic Equation.- 7.5 Optical Breakdown.- 7.6 Methods of Exciting an RF Field in a Discharge Volume.- 7.7 Breakdown in RF and Low-Frequency Ranges.- 8. Stable Glow Discharge.- 8.1 General Structure and Observable Features.- 8.2 Current-Voltage Characteristic of Discharge Between Electrodes.- 8.3 Dark Discharge and the Role Played by Space Charge in the Formation of the Cathode Layer.- 8.4 Cathode Layer.- 8.5 Transition Region Between the Cathode Layer and the Homogeneous Positive Column.- 8.6 Positive Column.- 8.7 Heating of the Gas and Its Effect on the Current-Voltage Characteristic.- 8.8 Electronegative Gas Plasma.- 8.9 Discharge in Fast Gas Flow.- 8.10 Anode Layer.- 9. Glow Discharge Instabilities and Their Consequences.- 9.1 Causes and Consequences of Instabilities.- 9.2 Quasisteady Parameters.- 9.3 Field and Electron Temperature Perturbations in the Case of Quasisteady-State Te.- 9.4 Thermal Instability.- 9.5 Attachment Instability.- 9.6 Some Other Frequently Encountered Destabilizing Mechanisms.- 9.7 Striations.- 9.8 Contraction of the Positive Column.- 10. Arc Discharge.- 10.1 Definition and Characteristic Features of Arc Discharge.- 10.2 Arc Types.- 10.3 Arc Initiation.- 10.4 Carbon Arc in Free Air.- 10.5 Hot Cathode Arc: Processes near the Cathode.- 10.6 Cathode Spots and Vacuum Arc.- 10.7 Anode Region.- 10.8 Low-Pressure Arc with Externally Heated Cathode.- 10.9 Positive Column of High-Pressure Arc (Experimental Data).- 10.10 Plasma Temperature and V - i Characteristic of High-Pressure Arc Columns.- 10.11 The Gap Between Electron and Gas Temperatures in "Equilibrium" Plasma.- 11. Suslainment and Production of Equilibrium Plasma by Fields in Various Frequency Ranges.- 11.1 Introduction. Energy Balance in Plasma.- 11.2 Arc Column in a Constant Field.- 11.3 Inductively Coupled Radio-Frequency Discharge.- 11.4 Discharge in Microwave Fields.- 11.5 Continuous Optical Discharges.- 11.6 Plasmatrons: Generators of Dense Low-Temperature Plasma.- 12. Spark and Corona Discharges.- 12.1 General Concepts.- 12.2 Individual Electron Avalanche.- 12.3 Concept of Streamers.- 12.4 Breakdown and Streamers in Electronegative Gases (Air) in Moderately Wide Gaps with a Uniform Field.- 12.5 Spark Channel.- 12.6 Corona Discharge.- 12.7 Models of Streamer Propagation.- 12.8 Breakdown in Long Air Gaps with Strongly Nonuniform Fields (Experimental Data).- 12.9 Leader Mechanism of Breakdown of Long Gaps.- 12.10 Return Wave (Return Stroke).- 12.11 Lightning.- 12.12 Negative Stepped Leader.- 13. Capacitively Coupled Radio-Frequency Discharge.- 13.1 Drift Oscillations of Electron Gas.- 13.2 Idealized Model of the Passage of High-Frequency Current Through a Long Plane Gap at Elevated Pressures.- 13.3 V - i Characteristic of Homogeneous Positive Columns.- 13.4 Two Forms of CCRF Discharge Realization and Constant Positive Potential of Space: Experiment.- 13.5 Electrical Processes in a Nonconducting Electrode Layer and the Mechanism of Closing the Circuit Current.- 13.6 Constant Positive Potential of the Weak-Current Discharge Plasma.- 13.7 High-Current Mode.- 13.8 The Structure of a Medium-Pressure Discharge: Results of Numerical Modeling.- 13.9 Normal Current Density in Weak-Current Mode and Limits on the Existence of this Mode.- 14. Discharges in High-Power CW CO2 Lasers.- 14.1 Principles of Operation of Electric-Discharge CO2 Lasers.- 14.2 Two Methods of Heat Removal from Lasers.- 14.3 Methods of Suppressing Instabilities.- 14.4 Organization of Large-Volume Discharges Involving Gas Pumping.- References.

4,306 citations


"Plasma-assisted ignition and combus..." refers background or methods in this paper

  • ...Further simplification is possible using the so-called two-term approximation in which the EEDF is presented in the form f(v) = f0(v) + f1(v)cosθ [Raizer, 1991]), where v is the electron velocity and θ is the angle between the electron velocity and the ambient electric field....

    [...]

  • ...Average electron energy in gas discharge is determined by a reduced electric field E/n, where E is the electric field and n is the gas number density [Raizer, 1991]....

    [...]

  • ...Main direction of energy deposition is rotational excitation of the gas [Raizer, 1991]....

    [...]

  • ...Arc discharges develop at relatively low E/n. Main direction of energy deposition is rotational excitation of the gas [Raizer, 1991]....

    [...]

  • ...Steady-state MW discharges under high-pressure conditions consist of number of filaments of almost equilibrium relatively hot plasma [Raizer, 1991]....

    [...]

Journal ArticleDOI
TL;DR: The BOLSIG+ solver as mentioned in this paper provides steady-state solutions of the BE for electrons in a uniform electric field, using the classical two-term expansion, and is able to account for different growth models, quasi-stationary and oscillating fields, electron-neutral collisions and electron-electron collisions.
Abstract: Fluid models of gas discharges require the input of transport coefficients and rate coefficients that depend on the electron energy distribution function. Such coefficients are usually calculated from collision cross-section data by solving the electron Boltzmann equation (BE). In this paper we present a new user-friendly BE solver developed especially for this purpose, freely available under the name BOLSIG+, which is more general and easier to use than most other BE solvers available. The solver provides steady-state solutions of the BE for electrons in a uniform electric field, using the classical two-term expansion, and is able to account for different growth models, quasi-stationary and oscillating fields, electron–neutral collisions and electron–electron collisions. We show that for the approximations we use, the BE takes the form of a convection-diffusion continuity-equation with a non-local source term in energy space. To solve this equation we use an exponential scheme commonly used for convection-diffusion problems. The calculated electron transport coefficients and rate coefficients are defined so as to ensure maximum consistency with the fluid equations. We discuss how these coefficients are best used in fluid models and illustrate the influence of some essential parameters and approximations.

2,633 citations

Journal ArticleDOI
TL;DR: In this article, a detailed chemical kinetic mechanism has been developed and used to study the oxidation of n-heptane in flow reactors, shock tubes, and rapid compression machines, where the initial pressure ranged from 1-42 atm, the temperature from 550-1700 K, the equivalence ratio from 0.3-1.5, and nitrogen-argon dilution from 70-99%.

1,835 citations

Journal ArticleDOI
TL;DR: In this paper, a non-equilibrium discharge in nitrogen-oxygen mixtures is developed, which almost wholly describes chemical transformations of particles in the cold (200 K
Abstract: A kinetic scheme for non-equilibrium discharge in nitrogen-oxygen mixtures is developed, which almost wholly describes chemical transformations of particles in the cold (200 K

1,558 citations

Journal ArticleDOI
TL;DR: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios as discussed by the authors.
Abstract: A detailed kinetic mechanism has been developed to simulate the combustion of H2/O2 mixtures, over a wide range of temperatures, pressures, and equivalence ratios. Over the series of experiments numerically investigated, the temperature ranged from 298 to 2700 K, the pressure from 0.05 to 87 atm, and the equivalence ratios from 0.2 to 6. Ignition delay times, flame speeds, and species composition data provide for a stringent test of the chemical kinetic mechanism, all of which are simulated in the current study with varying success. A sensitivity analysis was carried out to determine which reactions were dominating the H2/O2 system at particular conditions of pressure, temperature, and fuel/oxygen/diluent ratios. Overall, good agreement was observed between the model and the wide range of experiments simulated. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 603–622, 2004

931 citations