scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plasmodium falciparum clearance in clinical studies of artesunate-amodiaquine and comparator treatments in sub-Saharan Africa, 1999–2009

TL;DR: Within the period covered by these studies, rapid Plasmodium falciparum clearance continues to be achieved in Sub-Saharan African patients treated with ACT, and in particular with ASAQ, and the prediction formula for parasite clearance time could be a pragmatic tool for studies with binary outcomes and once-daily sampling.
Abstract: Artemisinin-based combination therapy (ACT) is the recommended first-line therapy for uncomplicated Plasmodium falciparum malaria worldwide but decreased artemisinin susceptibility, phenotypically characterized as slow parasite clearance time (PCT), has now been reported in Southeast Asia. This makes it all too important to measure the dynamics of parasite clearance in African patients treated with ACT over time, to understand trends and detect changes early enough to intervene Individual patient data from 27 clinical trials of artesunate-amodiaquine (ASAQ) vs comparators conducted between 1999 and 2009 were analysed for parasite clearance on modified intent-to-treat (ITT) basis. Overall 15,017 patients treated for uncomplicated P. falciparum malaria at 44 sites in 20 sub-Saharan African countries were included in the analysis; 51% (n=7,660) vs 49% (n=7,357) were treated with ASAQ and comparator treatments, respectively. Seventy-seven per cent (77%) were children under six years of age. The proportion of the patients treated with ASAQ with persistent parasitaemia on Day 2 was 8.6%, and 1.5% on Day 3. Risk factor for not clearing parasites on Day 2 and Day 3 calculated by multivariate logistic regression with random effect on site and controlling for treatment were: high parasitaemia before treatment was (adjusted risk ratios (AOR) 2.12, 95% CI 1.91-2.35, AOR 2.43, 95% CI 1.98-3.00, respectively); non-ACT treatment (p=0.001, for all comparisons). Anaemia (p=0.001) was an additional factor for Day 2 and young age (p=0.005) for Day 3. In patients treated with ASAQ in studies who had complete parasitaemia data every 24 hours up to Day 3 and additionally Day 7, the parasite reduction ratio was 93.9% by Day 1 and 99.9% by Day 2. Using the median parasitaemia before treatment (p0=27,125 μL) and a fitted model, the predicted PCT (pPCT = 3.614*ln (p0) – 6.135, r² = 0.94) in ASAQ recipients was 31 hours. Within the period covered by these studies, rapid Plasmodium falciparum clearance continues to be achieved in Sub-Saharan African patients treated with ACT, and in particular with ASAQ. The prediction formula for parasite clearance time could be a pragmatic tool for studies with binary outcomes and once-daily sampling, both for research and monitoring purposes.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
21 Aug 2014-PLOS ONE
TL;DR: The prevalence of K13-propeller and FP2 polymorphisms did not increase over time, and was not associated with either time since prior receipt of an ACT or the persistence of parasites ≥2 days following treatment with an ACT, indicating that artemisinin resistance is not prevalent in Uganda.
Abstract: The emergence of resistance to artemisinin derivatives in Southeast Asia, manifested as delayed clearance of Plasmodium falciparum following treatment with artemisinins, is a major concern. Recently, the artemisinin resistance phenotype was attributed to mutations in portions of a P. falciparum gene (PF3D7_1343700) encoding kelch (K13) propeller domains, providing a molecular marker to monitor the spread of resistance. The P. falciparum cysteine protease falcipain-2 (FP2; PF3D7_1115700) has been shown to contribute to artemisinin action, as hemoglobin degradation is required for potent drug activity, and a stop mutation in the FP2 gene was identified in parasites selected for artemisinin resistance. Although delayed parasite clearance after artemisinin-based combination therapy (ACT) has not yet been noted in Uganda and ACTs remain highly efficacious, characterizing the diversity of these genes is important to assess the potential for resistance selection and to provide a baseline for future surveillance. We therefore sequenced the K13-propeller domain and FP2 gene in P. falciparum isolates from children previously treated with ACT in Uganda, including samples from 2006–7 (n = 49) and from 2010–12 (n = 175). Using 3D7 as the reference genome, we identified 5 non-synonymous polymorphisms in the K13-propeller domain (133 isolates) and 35 in FP2 (160 isolates); these did not include the polymorphisms recently associated with resistance after in vitro selection or identified in isolates from Asia. The prevalence of K13-propeller and FP2 polymorphisms did not increase over time, and was not associated with either time since prior receipt of an ACT or the persistence of parasites ≥2 days following treatment with an ACT. Thus, the K13-propeller and FP2 polymorphisms associated with artemisinin resistance are not prevalent in Uganda, and we did not see evidence for selection of polymorphisms in these genes.

115 citations


Cites background from "Plasmodium falciparum clearance in ..."

  • ...Second, as delayed clearance of parasites after therapy is uncommon and associated with high baseline parasitemia in Uganda, persistent parasitemia 2 days after the onset of therapy is likely not a reliable indicator of resistance [6,8]....

    [...]

Journal ArticleDOI
TL;DR: There is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation, and there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use of AL in western Kenya.
Abstract: Artemether–lumefantrine (AL) became the first-line treatment for uncomplicated malaria in Kenya in 2006. Studies have shown AL selects for SNPs in pfcrt and pfmdr1 genes in recurring parasites compared to the baseline infections. The genotypes associated with AL selection are K76 in pfcrt and N86, 184F and D1246 in pfmdr1. To assess the temporal change of these genotypes in western Kenya, 47 parasite isolates collected before (pre-ACT; 1995–2003) and 745 after (post-ACT; 2008–2014) introduction of AL were analyzed. In addition, the associations of parasite haplotype against the IC50 of artemether and lumefantrine, and clearance rates were determined. Parasite genomic DNA collected between 1995 and 2014 was analyzed by sequencing or PCR-based single-base extension on Sequenom MassARRAY. IC50s were determined for a subset of the samples. One hundred eighteen samples from 2013 to 2014 were from an efficacy trial of which 68 had clearance half-lives. Data revealed there were significant differences between pre-ACT and post-ACT genotypes at the four codons (chi-square analysis; p < 0.0001). The prevalence of pfcrt K76 and N86 increased from 6.4% in 1995–1996 to 93.2% in 2014 and 0.0% in 2002–2003 to 92.4% in 2014 respectively. Analysis of parasites carrying pure alleles of K + NFD or T + YYY haplotypes revealed that 100.0% of the pre-ACT parasites carried T + YYY and 99.3% of post-ACT parasites carried K + NFD. There was significant correlation (p = 0.04) between lumefantrine IC50 and polymorphism at pfmdr1 codon 184. There was no difference in parasite clearance half-lives based on genetic haplotype profiles. This study shows there is a significant change in parasite genotype, with key molecular determinants of AL selection almost reaching saturation. The implications of these findings are not clear since AL remains highly efficacious. However, there is need to closely monitor parasite genotypic, phenotypic and clinical dynamics in response to continued use of AL in western Kenya.

36 citations


Cites background from "Plasmodium falciparum clearance in ..."

  • ...However, ACTs remain highly efficacious in subSaharan Africa (SSA) with fast clearance half-lives (Ashley et al., 2014; Zwang et al., 2014)....

    [...]

Journal ArticleDOI
TL;DR: This study demonstrated the absence of k13-resistant genotypes in P. falciparum isolates from Cameroon, giving a baseline for the long-term monitoring of artemisinin derivative efficacy in Africa.
Abstract: The spread of Plasmodium falciparum resistance to artemisinin derivatives in Southeast Asia is a major source of concern and the emergence of resistance in Africa would have dramatic consequences, by increasing malaria mortality and morbidity. It is therefore urgent to implement regular monitoring in sentinel sites in sub-Saharan Africa using robust and easy-to-implement tools. The prevalence of k13-propeller mutations and the phenotypic profiles are poorly known in sub-Saharan Africa. Here, the k13-propeller polymorphism was compared to both ex vivo susceptibility to DHA and early parasitological and clinical responses to artemisinin combination therapy (ACT). Plasmodium falciparum isolates were collected in 2015 in Yaounde (Cameroon) from patients treated with dihydroartemisinin-piperaquine combination. Samples were analysed for their susceptibility to artemisinin using the k13-propeller sequencing, the ex vivo ring-stage survival assay, the in vivo parasite positive rate and the clinical statute at day 2. None of the collected isolates revealed the presence of resistance mutations in the k13-propeller sequence. The median ring-stage survival rate for all the 64 interpretable isolates after a 6-hour pulse of 700 nM dihydroartemisinin was low, 0.49% (IQR: 0–1.3). Total parasite clearance was observed for 87.5% of patients and the remaining parasitaemic isolates (12.5%) showed a high reduction of parasite load, ranging from 97.5 to 99.9%. Clinical symptoms disappeared in 92.8% of cases. This study demonstrated the absence of k13-resistant genotypes in P. falciparum isolates from Cameroon. Only synonymous mutations were found with a low prevalence (4.3%). A good association between k13 genotypes and the ex vivo ring-stage survival assay or parasitological and clinical data was obtained. These results give a baseline for the long-term monitoring of artemisinin derivative efficacy in Africa.

23 citations

Journal ArticleDOI
TL;DR: The results demonstrate the potent preclinical antileukemic activity of ARTS as well as its potential for a rapid transition to a clinical trial either alone or in combination with conventional chemotherapy or BCL-2 inhibitor, for treatment of AML.

22 citations

Journal ArticleDOI
TL;DR: An analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea, suggests that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.
Abstract: Efforts to control malaria may affect malaria parasite genetic variability and drug resistance, the latter of which is associated with genetic events that promote mechanisms to escape drug action. The worldwide spread of drug resistance has been a major obstacle to controlling Plasmodium falciparum malaria, and thus the study of the origin and spread of associated mutations may provide some insights into the prevention of its emergence. This study reports an analysis of P. falciparum genetic diversity, focusing on antimalarial resistance-associated molecular markers in two socioeconomically different villages in mainland Equatorial Guinea. The present study took place 8 years after a previous one, allowing the analysis of results before and after the introduction of an artemisinin-based combination therapy (ACT), i.e., artesunate plus amodiaquine. Genetic diversity was assessed by analysis of the Pfmsp2 gene and neutral microsatellite loci. Pfdhps and Pfdhfr alleles associated with sulfadoxine-pyrimethamine (SP) resistance and flanking microsatellite loci were investigated, and the prevalences of drug resistance-associated point mutations of the Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps genes were estimated. Further, to monitor the use of ACT, we provide the baseline prevalences of K13 propeller mutations and Pfmdr1 copy numbers. After 8 years, noticeable differences occurred in the distribution of genotypes conferring resistance to chloroquine and SP, and the spread of mutated genotypes differed according to the setting. Regarding artemisinin resistance, although mutations reported as being linked to artemisinin resistance were not present at the time, several single nucleotide polymorphisms (SNPs) were observed in the K13 gene, suggesting that closer monitoring should be maintained to prevent the possible spread of artemisinin resistance in Africa.

17 citations


Cites background from "Plasmodium falciparum clearance in ..."

  • ...falciparum resistance to artemisinin derivatives in Southeast Asia (where it was introduced for the first time in the mid-1990s), but so far it has not been detected in Africa (13)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: The combination of artesunate and amodiaquine improved treatment efficacy in Gabon and Kenya, and was equivalent in Sénégal, and is a potential combination for use in Africa.

307 citations


"Plasmodium falciparum clearance in ..." refers background or methods in this paper

  • ...Predicted time of parasite clearance The number of patients included in RCT at 17 sites with complete parasitaemia record (every 24 hours from Day 0 to Day 3 plus Day 7) was 4,848 of whom 2,355 were treated with ASAQ and 2,493 with a comparator drug....

    [...]

  • ...Consecutive parasite slide results (Day 0, Day 1, Day 2, Day 3, Day 7) were available at 18 sites from five randomized controlled trials (RCT) [17-19,26,27]....

    [...]

  • ...Using multivariate logistic regression with random effect on site and controlling for treatment, the risk factors for a patient to remain positive on Day 2 were higher parasitaemia before treatment (AOR 2.12, 95% CI 1.91-2.35, p = 0.001) and anaemia (AOR 1.22, 95% CI 1.07-1.38, p = 0.001); no significant difference in the risk of being parasitaemic on Day 2 was detected in RCT comparing ASAQ to other ACT: AL (p = 0.245), DP (p = 0.762), AS + SP (p = 0.291), whereas patients treated with non-ACT were at higher risk: AQ+ SP (AOR 14.53, 95% CI 11.36-18.59, p = 0.001), CQ + SP (AOR 20.10, 95% CI 15.07-26.82, p = 0.001), or AQ (AOR 21.63, 95% CI 12.73-36.75, p = 0.001)....

    [...]

  • ...Out of the 27 studies included (conducted between 1999 and 2009), three were multi-country studies [17-19], two studies compared ASAQ fixed and loose combination [20-22] and three studies were non-comparative (in Sierra Leone [23] and Senegal [24,25])....

    [...]

Journal ArticleDOI
TL;DR: Dihydroartemisinin-piperaquine is another effective first-line treatment for P. falciparum malaria and ACTs with long half-lives may provide some benefit, while the performance of the non-ACT (amodiaquine plus sulfadoxine-pyrimethamine) falls below WHO recommendations for first- line therapy in parts of Africa.
Abstract: Background The World Health Organization recommends uncomplicated P. falciparum malaria is treated using Artemisinin-based Combination Therapy (ACT). This review aims to assist the decision making of malaria control programmes by providing an overview of the relative benefits and harms of the available options. Objectives To compare the effects of ACTs with other available ACT and non-ACT combinations for treating uncomplicated P. falciparum malaria. Search strategy We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS, and the metaRegister of Controlled Trials (mRCT) to March 2009. Selection criteria Randomized head to head trials of ACTs in uncomplicated P. falciparum malaria. This review is limited to: dihydroartemisinin-piperaquine; artesunate plus mefloquine; artemether-lumefantrine (six doses); artesunate plus amodiaquine; artesunate plus sulfadoxine-pyrimethamine and amodiaquine plus sulfadoxine-pyrimethamine. Data collection and analysis Two authors independently assessed trials for eligibility and risk of bias, and extracted data. We analysed primary outcomes in line with the WHO 'Protocol for assessing and monitoring antimalarial drug efficacy' and compared drugs using risk ratios (RR) and 95% confidence intervals (CI). Secondary outcomes were effects on P. vivax, gametocytes, haemoglobin, and adverse events. Main results Fifty studiesmet the inclusion criteria. All five ACTs achieved PCR adjusted failure rates of <10%, in line with WHO recommendations, at most study sites. Dihydroartemisinin-piperaquine performed well compared to the ACTs in current use (PCR adjusted treatment failure versus artesunate plus mefloquine in Asia; RR 0.39, 95% CI 0.19 to 0.79; three trials, 1062 participants; versus artemether-lumefantrine in Africa; RR 0.39, 95% CI 0.24 to 0.64; three trials, 1136 participants). ACTs were superior to amodiaquine plus sulfadoxine-pyrimethamine in East Africa (PCR adjusted treatment failure versus artemether-lumefantrine; RR 0.12, 95% CI 0.06 to 0.24; two trials, 618 participants; versus AS+AQ; RR 0.44, 95% CI 0.22 to 0.89; three trials, 1515 participants). Dihydroartemisinin-piperaquine (RR 0.32, 95% CI 0.24 to 0.43; four trials, 1442 participants) and artesunate plus mefloquine (RR 0.30, 95% CI 0.21 to 0.41; four trials, 1003 participants) were more effective than artemether-lumefantrine at reducing the incidence of P. vivax over 42 days follow up. Authors' conclusions Dihydroartemisinin-piperaquine is another effective first-line treatment for P. falciparum malaria. The performance of the non-ACT (amodiaquine plus sulfadoxine-pyrimethamine) falls below WHO recommendations for first-line therapy in parts of Africa. In areas where primaquine is not being used for radical cure of P. vivax, ACTs with long half-lives may provide some benefit.

290 citations


"Plasmodium falciparum clearance in ..." refers background in this paper

  • ...While ASAQ is generally effective, the decreasing efficacy of AQ single-agent treatment have been reported in some sub-Saharan African settings [14,15]....

    [...]

Journal ArticleDOI
23 Feb 2009-PLOS ONE
TL;DR: Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance.
Abstract: Background Artemisinin combination treatments (ACT) are recommended as first line treatment for falciparum malaria throughout the malaria affected world. We reviewed the efficacy of a 3-day regimen of mefloquine and artesunate regimen (MAS3), over a 13 year period of continuous deployment as first-line treatment in camps for displaced persons and in clinics for migrant population along the Thai-Myanmar border. Methods and Findings 3,264 patients were enrolled in prospective treatment trials between 1995 and 2007 and treated with MAS3. The proportion of patients with parasitaemia persisting on day-2 increased significantly from 4.5% before 2001 to 21.9% since 2002 (p<0.001). Delayed parasite clearance was associated with increased risk of developing gametocytaemia (AOR = 2.29; 95% CI, 2.00–2.69, p = 0.002). Gametocytaemia on admission and carriage also increased over the years (p = 0.001, test for trend, for both). MAS3 efficacy has declined slightly but significantly (Hazards ratio 1.13; 95% CI, 1.07–1.19, p<0.001), although efficacy in 2007 remained well within acceptable limits: 96.5% (95% CI, 91.0–98.7). The in vitro susceptibility of P. falciparum to artesunate increased significantly until 2002, but thereafter declined to levels close to those of 13 years ago (geometric mean in 2007: 4.2 nM/l; 95% CI, 3.2–5.5). The proportion of infections caused by parasites with increased pfmdr1 copy number rose from 30% (12/40) in 1996 to 53% (24/45) in 2006 (p = 0.012, test for trend). Conclusion Artesunate-mefloquine remains a highly efficacious antimalarial treatment in this area despite 13 years of widespread intense deployment, but there is evidence of a modest increase in resistance. Of particular concern is the slowing of parasitological response to artesunate and the associated increase in gametocyte carriage.

279 citations


"Plasmodium falciparum clearance in ..." refers background in this paper

  • ...Artemisinin tolerance/resistance manifests itself with slower parasite clearance, while ACT remain generally effective both clinically and parasitologically [1-4]....

    [...]

Journal ArticleDOI
TL;DR: Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artesunate resistance in Southeast Asia.
Abstract: The recent emergence of artemisinin-resistant Plasmodium falciparum malaria in western Cambodia could threaten prospects for malaria elimination. Identification of the genetic basis of resistance would provide tools for molecular surveillance, aiding efforts to contain resistance. Clinical trials of artesunate efficacy were conducted in Bangladesh, in northwestern Thailand near the Myanmar border, and at two sites in western Cambodia. Parasites collected from trial participants were genotyped at 8,079 single nucleotide polymorphisms (SNPs) using a P. falciparum-specific SNP array. Parasite genotypes were examined for signatures of recent positive selection and association with parasite clearance phenotypes to identify regions of the genome associated with artemisinin resistance. Four SNPs on chromosomes 10 (one), 13 (two), and 14 (one) were significantly associated with delayed parasite clearance. The two SNPs on chromosome 13 are in a region of the genome that appears to be under strong recent positive selection in Cambodia. The SNPs on chromosomes 10 and 13 lie in or near genes involved in postreplication repair, a DNA damage-tolerance pathway. Replication and validation studies are needed to refine the location of loci responsible for artemisinin resistance and to understand the mechanism behind it; however, two SNPs on chromosomes 10 and 13 may be useful markers of delayed parasite clearance in surveillance for artemisinin resistance in Southeast Asia.

266 citations


Additional excerpts

  • ...An in vitro assay (Ring Stage Assay) has also focused on the very early phases of the ring-stage parasite [7]....

    [...]

Journal ArticleDOI
TL;DR: The parasite clearance estimator provides a consistent, reliable and accurate method to estimate the lag phase and malaria parasite clearance rate and could be used to detect early signs of emerging resistance to artemisinin derivatives and other compounds which affect ring-stage clearance.
Abstract: Background A significant reduction in parasite clearance rates following artesunate treatment of falciparum malaria, and increased failure rates following artemisinin combination treatments (ACT), signaled emergent artemisinin resistance in Western Cambodia. Accurate measurement of parasite clearance is therefore essential to assess the spread of artemisinin resistance in Plasmodium falciparum. The slope of the log-parasitaemia versus time relationship is considered to be the most robust measure of anti-malarial effect. However, an initial lag phase of numerical instability often precedes a steady exponential decline in the parasite count after the start of anti-malarial treatment. This lag complicates the clearance estimation, introduces observer subjectivity, and may influence the accuracy and consistency of reported results.

254 citations


"Plasmodium falciparum clearance in ..." refers background in this paper

  • ...Between parasite clearance estimators [9] and Day 3 persistency [10], simple estimations of PCT based on daily sampling may add elements to facilitate comparisons and detection of trends....

    [...]

  • ...However, as of today, in the clinic as well as in the field the parasite clearance time (PCT) and its related clinical phenotype (delayed PCT) remain the best practical surrogates of artemisinin in vivo resistance [8]; the problem is that the frequent sampling (every six or eight hours) required to measure PCT accurately and to estimate the parasite clearance half-life [9] is practically difficult even in research settings....

    [...]

Related Papers (5)