scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices

01 Feb 2014-Nature Photonics (Nature Research)-Vol. 8, Iss: 2, pp 95-103
TL;DR: In this paper, the potential of hot electrons in metallic structures and its potential as an alternative to conventional electron-hole separation in semiconductor devices are discussed along with challenges in terms of the materials, architectures and fabrication methods.
Abstract: Optical generation of hot electrons in metallic structures and its potential as an alternative to conventional electron–hole separation in semiconductor devices are reviewed. The possibilities for realizing high conversion efficiencies with low fabrication costs are discussed along with challenges in terms of the materials, architectures and fabrication methods
Citations
More filters
Journal ArticleDOI
TL;DR: Recent advances in the understanding and application of plasmon-induced hot carrier generation are discussed and some of the exciting new directions for the field are highlighted.
Abstract: The discovery of the photoelectric effect by Heinrich Hertz in 1887 set the foundation for over 125 years of hot carrier science and technology. In the early 1900s it played a critical role in the development of quantum mechanics, but even today the unique properties of these energetic, hot carriers offer new and exciting opportunities for fundamental research and applications. Measurement of the kinetic energy and momentum of photoejected hot electrons can provide valuable information on the electronic structure of materials. The heat generated by hot carriers can be harvested to drive a wide range of physical and chemical processes. Their kinetic energy can be used to harvest solar energy or create sensitive photodetectors and spectrometers. Photoejected charges can also be used to electrically dope two-dimensional materials. Plasmon excitations in metallic nanostructures can be engineered to enhance and provide valuable control over the emission of hot carriers. This Review discusses recent advances in the understanding and application of plasmon-induced hot carrier generation and highlights some of the exciting new directions for the field.

2,511 citations

Journal ArticleDOI
TL;DR: Various cocatalysts, such as the biomimetic, metal-based,Metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area.
Abstract: Photoreduction of CO2 into sustainable and green solar fuels is generally believed to be an appealing solution to simultaneously overcome both environmental problems and energy crisis. The low selectivity of challenging multi-electron CO2 photoreduction reactions makes it one of the holy grails in heterogeneous photocatalysis. This Review highlights the important roles of cocatalysts in selective photocatalytic CO2 reduction into solar fuels using semiconductor catalysts. A special emphasis in this review is placed on the key role, design considerations and modification strategies of cocatalysts for CO2 photoreduction. Various cocatalysts, such as the biomimetic, metal-based, metal-free, and multifunctional ones, and their selectivity for CO2 photoreduction are summarized and discussed, along with the recent advances in this area. This Review provides useful information for the design of highly selective cocatalysts for photo(electro)reduction and electroreduction of CO2 and complements the existing reviews on various semiconductor photocatalysts.

1,365 citations

Journal ArticleDOI
TL;DR: A comprehensive review of recent research activities on bimetallic nanocrystals, featuring key examples from the literature that exemplify critical concepts and place a special emphasis on mechanistic understanding.
Abstract: Achieving mastery over the synthesis of metal nanocrystals has emerged as one of the foremost scientific endeavors in recent years. This intense interest stems from the fact that the composition, size, and shape of nanocrystals not only define their overall physicochemical properties but also determine their effectiveness in technologically important applications. Our aim is to present a comprehensive review of recent research activities on bimetallic nanocrystals. We begin with a brief introduction to the architectural diversity of bimetallic nanocrystals, followed by discussion of the various synthetic techniques necessary for controlling the elemental ratio and spatial arrangement. We have selected key examples from the literature that exemplify critical concepts and place a special emphasis on mechanistic understanding. We then discuss the composition-dependent properties of bimetallic nanocrystals in terms of catalysis, optics, and magnetism and conclude the Review by highlighting applications that h...

1,203 citations

Journal ArticleDOI
TL;DR: In this paper, a review of the surface modification of TiO2 for photocatalytic CO2 reduction, including impurity doping, metal deposition, alkali modification, heterojunction construction and carbon-based material loading, is presented.

930 citations

Journal ArticleDOI
TL;DR: The physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents are critically reviewed, highlighting key applications and present challenges for molecular PAI.
Abstract: Photoacoustic imaging (PAI) is an emerging tool that bridges the traditional depth limits of ballistic optical imaging and the resolution limits of diffuse optical imaging. Using the acoustic waves generated in response to the absorption of pulsed laser light, it provides noninvasive images of absorbed optical energy density at depths of several centimeters with a resolution of ∼100 μm. This versatile and scalable imaging modality has now shown potential for molecular imaging, which enables visualization of biological processes with systemically introduced contrast agents. Understanding the relative merits of the vast range of contrast agents available, from small-molecule dyes to gold and carbon nanostructures to liposome encapsulations, is a considerable challenge. Here we critically review the physical, chemical and biochemical characteristics of the existing photoacoustic contrast agents, highlighting key applications and present challenges for molecular PAI.

912 citations

References
More filters
Journal ArticleDOI
24 Oct 1991-Nature
TL;DR: In this article, the authors describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency.
Abstract: THE large-scale use of photovoltaic devices for electricity generation is prohibitively expensive at present: generation from existing commercial devices costs about ten times more than conventional methods1. Here we describe a photovoltaic cell, created from low-to medium-purity materials through low-cost processes, which exhibits a commercially realistic energy-conversion efficiency. The device is based on a 10-µm-thick, optically transparent film of titanium dioxide particles a few nanometres in size, coated with a monolayer of a charge-transfer dye to sensitize the film for light harvesting. Because of the high surface area of the semiconductor film and the ideal spectral characteristics of the dye, the device harvests a high proportion of the incident solar energy flux (46%) and shows exceptionally high efficiencies for the conversion of incident photons to electrical current (more than 80%). The overall light-to-electric energy conversion yield is 7.1-7.9% in simulated solar light and 12% in diffuse daylight. The large current densities (greater than 12 mA cm-2) and exceptional stability (sustaining at least five million turnovers without decomposition), as well as the low cost, make practical applications feasible.

26,457 citations

Journal Article
01 Jan 2001-Nature
TL;DR: In this paper, the authors look into the historical background, and present status and development prospects for photoelectrochemical cells, based on nanocrystalline materials and conducting polymer films.
Abstract: Until now, photovoltaics - the conversion of sunlight to electrical power - has been dominated by solid-state junction devices, often made of silicon. But this dominance is now being challenged by the emergence of a new generation of photovoltaic cells, based, for example, on nanocrystalline materials and conducting polymer films. These offer the prospect of cheap fabrication together with other attractive features, such as flexibility. The phenomenal recent progress in fabricating and characterizing nanocrystalline materials has opened up whole new vistas of opportunity. Contrary to expectation, some of the new devices have strikingly high conversion efficiencies, which compete with those of conventional devices. Here I look into the historical background, and present status and development prospects for this new generation of photoelectrochemical cells.

8,305 citations

Journal ArticleDOI
TL;DR: Recent advances at the intersection of plasmonics and photovoltaics are surveyed and an outlook on the future of solar cells based on these principles is offered.
Abstract: The emerging field of plasmonics has yielded methods for guiding and localizing light at the nanoscale, well below the scale of the wavelength of light in free space. Now plasmonics researchers are turning their attention to photovoltaics, where design approaches based on plasmonics can be used to improve absorption in photovoltaic devices, permitting a considerable reduction in the physical thickness of solar photovoltaic absorber layers, and yielding new options for solar-cell design. In this review, we survey recent advances at the intersection of plasmonics and photovoltaics and offer an outlook on the future of solar cells based on these principles.

8,028 citations

Book
05 Oct 2014
TL;DR: In this paper, the authors present a survey of optical spectra of Elemental Metal Clusters and Chain Aggregates and discuss experimental results and experimental methods for metal clustering experiments.
Abstract: 1. Introduction.- 2. Theoretical Considerations.- 3. Experimental Methods.- 4. Experimental Results and Discussion.- A.1 Tables: Optical Spectroscopy Experiments with Metal Clusters.- A.2 Survey of Optical Spectra of Elemental Metal Clusters and Chain-Aggregates.- A.3 Mie Computer Program.- References.

6,405 citations

Journal ArticleDOI
TL;DR: Kind's new edition is to be welcomed as mentioned in this paper, with a revised format and attractive illustrations, and with the inclusion of much new material this book has become one of the best sources for undergraduate teaching, likely to give the student a wish to dig deeper into the solid state.
Abstract: 3rd edition, complete modern revision C. Kittel London: John Wiley. 1966. Pp. 648. Price £4 14s. Kind's new edition is to be welcomed. There is a revised format and attractive illustrations, and with the inclusion of much new material this book has become one of the best sources for undergraduate teaching. It is above all an interesting book, likely to give the student a wish to dig deeper into the solid state.

5,704 citations