scispace - formally typeset
Journal ArticleDOI: 10.1039/D0EM00312C

Plastic particles in soil: state of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts.

04 Mar 2021-Environmental Science: Processes & Impacts (Royal Society of Chemistry (RSC))-Vol. 23, Iss: 2, pp 240-274
Abstract: Increased production and use of plastics has resulted in growth in the amount of plastic debris accumulating in the environment, potentially fragmenting into smaller pieces. Fragments <5 mm are typically defined as microplastics, while fragments <0.1 μm are defined as nanoplastics. Over the past decade, an increasing number of studies have reported the occurrence and potential hazards of plastic particles in the aquatic environment. However, less is understood about plastic particles in the terrestrial environment and specifically how much plastic accumulates in soils, the possible sources, potential ecological impacts, interaction of plastic particles with the soil environment, and appropriate extraction and analytical techniques for assessing the above. In this review, a comprehensive overview and a critical perspective on the current state of knowledge on plastic pollution in the soil environment is provided: detailing known sources, occurrence and distribution, analytical techniques used for identification and quantification and the ecological impacts of particles on soil. In addition, knowledge gaps are identified along with suggestions for future research.

... read more

Citations
  More

5 results found


Journal ArticleDOI: 10.1016/J.WATRES.2021.117367
01 Aug 2021-Water Research
Abstract: Plastics are ubiquitous contaminants that leak into the environment from multiple pathways including the use of treated sewage sludge (biosolids). Seven common plastics (polymers) were quantified in the solid fraction of archived biosolids samples from Australia and the United Kingdom from between 1950 and 2016. Six plastics were detected, with increasing concentrations observed over time for each plastic. Biosolids plastic concentrations correlated with plastic production estimates, implying a potential link between plastics production, consumption and leakage into the environment. Prior to the 1990s, the leakage of plastics into biosolids was limited except for polystyrene. Increased leakage was observed from the 1990s onwards; potentially driven by increased consumption of polyethylene, polyethylene terephthalate and polyvinyl chloride. We show that looking back in time along specific plastic pollution pathways may help unravel the potential sources of plastics leakage into the environment and provide quantitative evidence to support the development of source control interventions or regulations.

... read more

Topics: Biosolids (59%), Plastic pollution (54%)

2 Citations


Journal ArticleDOI: 10.1016/J.SCITOTENV.2021.147166
Yingxue Yu1, Markus Flury1Institutions (1)
Abstract: The amount of plastic particles in terrestrial ecosystems is not well known, not only because it is difficult to extract and identify plastic particles from terrestrial samples, but also because it is challenging to take representative samples from soils or sediments. Here, we numerically simulated how to take representative terrestrial samples to quantify plastic particles, and we evaluated the accuracy (error) of reported plastic concentrations in the literature. Fields with randomly distributed plastic particles (uniform and clustered) were numerically generated and sampled to determine the representative elementary volume (REV) and the required number of samples to quantify plastic concentrations (10 to 106 particles/m2) with different relative errors (5%, 10%, 15%). The REV and the required number of samples decrease hyperbolically as the plastic concentration increases, indicating a strong non-linear relation. For instance, hundreds to thousands of soil cores (8-cm diameter) would be required to quantify plastics at low concentrations (102 particles/m2), while a few cores are sufficient at high plastic concentrations (105 particles/m2). For an accurate measurement of plastic concentrations, the total surface area of samples taken should approach or exceed the REV. We recommend to take replicated samples with each sample as large as possible (e.g., 1 m × 1 m) rather than multiple small cores, and then reduce the soil volume by the quartering method.

... read more

1 Citations


Journal ArticleDOI: 10.1016/J.COESH.2021.100297
Abstract: Research on microplastics (MPs) primarily focuses on the abundance in different ecosystems, ecotoxicology, and health aspects. The primary focus is now on structural and physicochemical changes in soil, ecotoxicology, and influence on plant growth performance. Compost is considered one of the prime sources of MPs in agricultural environments, where MPs in compost can influence the carbon cycle in copious ways, such as soil microbial processes, plant growth, or litter decomposition. Microplastics are reported in the range of 10–2800 item kg−1 in compost from various countries. Most importantly, compost can be a carrier for MP-bound toxic trace metals into the agroecosystems. It has been identified that different toxic metals are associated with the MPs in compost, i.e. Cr, Pb, Cu and Ni; however, no considerable attention is given to the study of their concentrations, translocation, and fate. As the addition of MPs changes the physical, chemical, and biological properties of soil, which leads to a change in toxic trace metal fractionation and partitioning, as reported in the literature. Importantly, future research needs to capture the toxic metal mobilization and immobilization in terms of chemistry, aging, size, aggregation, and shape of MPs.

... read more

Topics: Microplastics (55%), Trace metal (52%), Ecotoxicology (51%) ... show more

1 Citations


Open accessJournal ArticleDOI: 10.1016/J.ECOENV.2021.112837
Sheng Yang1, Yanping Cheng1, Zaozao Chen1, Tong Liu1  +3 moreInstitutions (1)
Abstract: Nanoplastics, including polystyrene nanoplastics (PS-NPs), are widely existed in the atmosphere, which can be directly and continuously inhaled into the human body, posing a serious threat to the respiratory system. Therefore, it is urgent to estimate the potential pulmonary toxicity of airborne NPs and understand its underlying mechanism. In this research, we used two types of human lung epithelial cells (bronchial epithelium transformed with Ad12-SV40 2B, BEAS-2B) and (human pulmonary alveolar epithelial cells, HPAEpiC) to investigate the association between lung injury and PS-NPs. We found PS-NPs could significantly reduce cell viability in a dose-dependent manner and selected 7.5, 15 and 30 μg/cm2 PS-NPs as the exposure dosage levels. Microarray detection revealed that 770 genes in the 7.5 μg/cm2 group and 1951 genes in the 30 μg/cm2 group were distinctly altered compared to the control group. Function analysis suggested that redox imbalance might play central roles in PS-NPs induced lung injury. Further experiments verified that PS-NPs could break redox equilibrium, induce inflammatory effects, and triggered apoptotic pathways to cause cell death. Importantly, we found that PS-NPs could decrease transepithelial electrical resistance by depleting tight junctional proteins. Result also demonstrated that PS-NPs-treated cells increased matrix metallopeptidase 9 and Surfactant protein A levels, suggesting the exposure of PS-NPs might reduce the repair ability of the lung and cause tissue damage. In conclusion, nanoplastics could induce oxidative stress and inflammatory responses, followed by cell death and epithelial barrier destruction, which might result in tissue damage and lung disease after prolonged exposure.

... read more

Topics: Lung injury (64%), Lung (51%), Oxidative stress (51%) ... show more

References
  More

200 results found


Journal ArticleDOI: 10.1021/ES2031505
Abstract: This review of 68 studies compares the methodologies used for the identification and quantification of microplastics from the marine environment. Three main sampling strategies were identified: selective, volume-reduced, and bulk sampling. Most sediment samples came from sandy beaches at the high tide line, and most seawater samples were taken at the sea surface using neuston nets. Four steps were distinguished during sample processing: density separation, filtration, sieving, and visual sorting of microplastics. Visual sorting was one of the most commonly used methods for the identification of microplastics (using type, shape, degradation stage, and color as criteria). Chemical and physical characteristics (e.g., specific density) were also used. The most reliable method to identify the chemical composition of microplastics is by infrared spectroscopy. Most studies reported that plastic fragments were polyethylene and polypropylene polymers. Units commonly used for abundance estimates are “items per m2” ...

... read more

Topics: Microplastics (67%)

2,040 Citations


Journal ArticleDOI: 10.1016/J.ENVPOL.2013.02.031
Abstract: Plastic debris at the micro-, and potentially also the nano-scale, are widespread in the environment. Microplastics have accumulated in oceans and sediments worldwide in recent years, with maximum concentrations reaching 100 000 particles m3. Due to their small size, microplastics may be ingested by low trophic fauna, with uncertain consequences for the health of the organism. This review focuses on marine invertebrates and their susceptibility to the physical impacts of microplastic uptake. Some of the main points discussed are (1) an evaluation of the factors contributing to the bioavailability of microplastics including size and density; (2) an assessment of the relative susceptibility of different feeding guilds; (3) an overview of the factors most likely to influence the physical impacts of microplastics such as accumulation and translocation; and (4) the trophic transfer of microplastics. These findings are important in guiding future marine litter research and management strategies.

... read more

Topics: Microplastics (73%)

1,957 Citations


Journal ArticleDOI: 10.1021/ES201811S
Abstract: Plastic debris 1900 fibers per wash. This suggests that a large proportion of microplastic fibers found in the marine environment may be derived from sewage as a consequence of washing of clothes. As the human population grows and people use more synthetic textiles, contamination of habitats and animals by microplastic is likely to increase.

... read more

Topics: Population (52%), Microplastics (50%)

1,935 Citations


Journal ArticleDOI: 10.1016/J.WATRES.2015.02.012
15 May 2015-Water Research
Abstract: Plastic contamination is an increasing environmental problem in marine systems where it has spread globally to even the most remote habitats. Plastic pieces in smaller size scales, microplastics (particles <5 mm), have reached high densities (e.g., 100,000 items per m(3)) in waters and sediments, and are interacting with organisms and the environment in a variety of ways. Early investigations of freshwater systems suggest microplastic presence and interactions are equally as far reaching as are being observed in marine systems. Microplastics are being detected in freshwaters of Europe, North America, and Asia, and the first organismal studies are finding that freshwater fauna across a range of feeding guilds ingest microplastics. Drawing from the marine literature and these initial freshwater studies, we review the issue of microplastics in freshwater systems to summarise current understanding, identify knowledge gaps and suggest future research priorities. Evidence suggests that freshwater systems may share similarities to marine systems in the types of forces that transport microplastics (e.g. surface currents); the prevalence of microplastics (e.g. numerically abundant and ubiquitous); the approaches used for detection, identification and quantification (e.g. density separation, filtration, sieving and infrared spectroscopy); and the potential impacts (e.g. physical damage to organisms that ingest them, chemical transfer of toxicants). Differences between freshwater and marine systems include the closer proximity to point sources in freshwaters, the typically smaller sizes of freshwater systems, and spatial and temporal differences in the mixing/transport of particles by physical forces. These differences between marine and freshwater systems may lead to differences in the type of microplastics present. For example, rivers may show a predictable pattern in microplastic characteristics (size, shape, relative abundance) based on waste sources (e.g. household vs. industrial) adjacent to the river, and distance downstream from a point source. Given that the study of microplastics in freshwaters has only arisen in the last few years, we are still limited in our understanding of 1) their presence and distribution in the environment; 2) their transport pathways and factors that affect distributions; 3) methods for their accurate detection and quantification; 4) the extent and relevance of their impacts on aquatic life. We also do not know how microplastics might transfer from freshwater to terrestrial ecosystems, and we do not know if and how they may affect human health. This is concerning because human populations have a high dependency on freshwaters for drinking water and for food resources. Increasing the level of understanding in these areas is essential if we are to develop appropriate policy and management tools to address this emerging issue.

... read more

Topics: Microplastics (68%)

1,129 Citations


Open accessJournal ArticleDOI: 10.1016/J.SCITOTENV.2017.01.190
Abstract: Plastic debris is an environmentally persistent and complex contaminant of increasing concern. Understanding the sources, abundance and composition of microplastics present in the environment is a huge challenge due to the fact that hundreds of millions of tonnes of plastic material is manufactured for societal use annually, some of which is released to the environment. The majority of microplastics research to date has focussed on the marine environment. Although freshwater and terrestrial environments are recognised as origins and transport pathways of plastics to the oceans, there is still a comparative lack of knowledge about these environmental compartments. It is highly likely that microplastics will accumulate within continental environments, especially in areas of high anthropogenic influence such as agricultural or urban areas. This review critically evaluates the current literature on the presence, behaviour and fate of microplastics in freshwater and terrestrial environments and, where appropriate, also draws on relevant studies from other fields including nanotechnology, agriculture and waste management. Furthermore, we evaluate the relevant biological and chemical information from the substantial body of marine microplastic literature, determining the applicability and comparability of this data to freshwater and terrestrial systems. With the evidence presented, the authors have set out the current state of the knowledge, and identified the key gaps. These include the volume and composition of microplastics entering the environment, behaviour and fate of microplastics under a variety of environmental conditions and how characteristics of microplastics influence their toxicity. Given the technical challenges surrounding microplastics research, it is especially important that future studies develop standardised techniques to allow for comparability of data. The identification of these research needs will help inform the design of future studies, to determine both the extent and potential ecological impacts of microplastic pollution in freshwater and terrestrial environments.

... read more

Topics: Microplastics (67%)

999 Citations


Performance
Metrics
No. of citations received by the Paper in previous years
YearCitations
20215