scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Plate kinematics of the circum Red Sea—a re-evaluation

15 Sep 1987-Tectonophysics (Elsevier)-Vol. 141, pp 5-22
TL;DR: In this paper, a finite kinematic model of plate motions in the Red Sea area was constructed based on a re-evaluation of the plate boundaries in the Afro-Arabian rift system.
About: This article is published in Tectonophysics.The article was published on 1987-09-15. It has received 369 citations till now. The article focuses on the topics: Seafloor spreading & Plate tectonics.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors show that the production of magmatically active rifted margins and the effusion of flood basalts onto the adjacent continents can be explained by a simple model of rifting above a thermal anomaly in the underlying mantle.
Abstract: When continents rift to form new ocean basins, the rifting is sometimes accompanied by massive igneous activity. We show that the production of magmatically active rifted margins and the effusion of flood basalts onto the adjacent continents can be explained by a simple model of rifting above a thermal anomaly in the underlying mantle. The igneous rocks are generated by decompression melting of hot asthenospheric mantle as it rises passively beneath the stretched and thinned lithosphere. Mantle plumes generate regions beneath the lithosphere typically 2000 km in diameter with temperatures raised 100–200°C above normal. These relatively small mantle temperature increases are sufficient to cause the generation of huge quantities of melt by decompression: an increase of 100°C above normal doubles the amount of melt whilst a 200°C increase can quadruple it. In the first part of this paper we develop our model to predict the effects of melt generation for varying amounts of stretching with a range of mantle temperatures. The melt generated by decompression migrates rapidly upward, until it is either extruded as basalt flows or intruded into or beneath the crust. Addition of large quantities of new igneous rock to the crust considerably modifies the subsidence in rifted regions. Stretching by a factor of 5 above normal temperature mantle produces immediate subsidence of more than 2 km in order to maintain isostatic equilibrium. If the mantle is 150°C or more hotter than normal, the same amount of stretching results in uplift above sea level. Melt generated from abnormally hot mantle is more magnesian rich than that produced from normal temperature mantle. This causes an increase in seismic velocity of the igneous rocks emplaced in the crust, from typically 6.8 km/s for normal mantle temperatures to 7.2 km/s or higher. There is a concomitant density increase. In the second part of the paper we review volcanic continental margins and flood basalt provinces globally and show that they are always related to the thermal anomaly created by a nearby mantle plume. Our model of melt generation in passively upwelling mantle beneath rifting continental lithosphere can explain all the major rift-related igneous provinces. These include the Tertiary igneous provinces of Britain and Greenland and the associated volcanic continental margins caused by opening of the North Atlantic in the presence of the Iceland plume; the Parana and parts of the Karoo flood basalts together with volcanic continental margins generated when the South Atlantic opened; the Deccan flood basalts of India and the Seychelles-Saya da Malha volcanic province created when the Seychelles split off India above the Reunion hot spot; the Ethiopian and Yemen Traps created by rifting of the Red Sea and Gulf of Aden region above the Afar hot spot; and the oldest and probably originally the largest flood basalt province of the Karoo produced when Gondwana split apart. New continental splits do not always occur above thermal anomalies in the mantle caused by plumes, but when they do, huge quantities of igneous material are added to the continental crust. This is an important method of increasing the volume of the continental crust through geologic time.

2,821 citations

Journal ArticleDOI
TL;DR: In this article, the authors present and interpret GPS measurements of crustal motions for the period 1988-1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of Africa.
Abstract: We present and interpret Global Positioning System (GPS) measurements of crustal motions for the period 1988–1997 at 189 sites extending east-west from the Caucasus mountains to the Adriatic Sea and north-south from the southern edge of the Eurasian plate to the northern edge of the African plate. Sites on the northern Arabian platform move 18±2 mm/yr at N25°±5°W relative to Eurasia, less than the NUVEL-1A circuit closure rate (25±1 mm/yr at N21°±7°W). Preliminary motion estimates (1994–1997) for stations located in Egypt on the northeastern part of Africa show northward motion at 5–6±2 mm/yr, also slower than NUVEL-IA estimates (10±1 mm/yr at N2°±4°E). Eastern Turkey is characterized by distributed deformation, while central Turkey is characterized by coherent plate motion (internal deformation of <2 mm/yr) involving westward displacement and counterclockwise rotation of the Anatolian plate. The Anatolian plate is de-coupled from Eurasia along the right-lateral, strike-slip North Anatolian fault (NAF). We derive a best fitting Euler vector for Anatolia-Eurasia motion of 30.7°± 0.8°N, 32.6°± 0.4°E, 1.2°±0.1°/Myr. The Euler vector gives an upper bound for NAF slip rate of 24±1 mm/yr. We determine a preliminary GPS Arabia-Anatolia Euler vector of 32.9°±1.2°N, 40.3°±1.1°E, 0.8°±0.2°/Myr and an upper bound on left-lateral slip on the East Anatolian fault (EAF) of 9±1 mm/yr. The central and southern Aegean is characterized by coherent motion (internal deformation of <2 mm/yr) toward the SW at 30±1 mm/yr relative to Eurasia. Stations in the SE Aegean deviate significantly from the overall motion of the southern Aegean, showing increasing velocities toward the trench and reaching 10±1 mm/yr relative to the southern Aegean as a whole.

1,871 citations

Journal ArticleDOI
TL;DR: In this article, an elastic block model was developed to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults.
Abstract: [1] The GPS-derived velocity field (1988–2005) for the zone of interaction of the Arabian, African (Nubian, Somalian), and Eurasian plates indicates counterclockwise rotation of a broad area of the Earth's surface including the Arabian plate, adjacent parts of the Zagros and central Iran, Turkey, and the Aegean/Peloponnesus relative to Eurasia at rates in the range of 20–30 mm/yr. This relatively rapid motion occurs within the framework of the slow-moving (∼5 mm/yr relative motions) Eurasian, Nubian, and Somalian plates. The circulatory pattern of motion increases in rate toward the Hellenic trench system. We develop an elastic block model to constrain present-day plate motions (relative Euler vectors), regional deformation within the interplate zone, and slip rates for major faults. Substantial areas of continental lithosphere within the region of plate interaction show coherent motion with internal deformations below ∼1–2 mm/yr, including central and eastern Anatolia (Turkey), the southwestern Aegean/Peloponnesus, the Lesser Caucasus, and Central Iran. Geodetic slip rates for major block-bounding structures are mostly comparable to geologic rates estimated for the most recent geological period (∼3–5 Myr). We find that the convergence of Arabia with Eurasia is accommodated in large part by lateral transport within the interior part of the collision zone and lithospheric shortening along the Caucasus and Zagros mountain belts around the periphery of the collision zone. In addition, we find that the principal boundary between the westerly moving Anatolian plate and Arabia (East Anatolian fault) is presently characterized by pure left-lateral strike slip with no fault-normal convergence. This implies that “extrusion” is not presently inducing westward motion of Anatolia. On the basis of the observed kinematics, we hypothesize that deformation in the Africa-Arabia-Eurasia collision zone is driven in large part by rollback of the subducting African lithosphere beneath the Hellenic and Cyprus trenches aided by slab pull on the southeastern side of the subducting Arabian plate along the Makran subduction zone. We further suggest that the separation of Arabia from Africa is a response to plate motions induced by active subduction.

1,609 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined the available data, mainly topography, geoid, and heat flow, describing hotspots worldwide to constrain the mechanisms for swell uplift and to obtain fluxes and excess temperatures of mantle plumes.
Abstract: The available data, mainly topography, geoid, and heat flow, describing hotspots worldwide are examined to constrain the mechanisms for swell uplift and to obtain fluxes and excess temperatures of mantle plumes. Swell uplift is caused mainly by excess temperatures that move with the lithosphere plate and to a lesser extent hot asthenosphere near the hotspot. The volume, heat, and buoyancy fluxes of hotspots are computed from the cross-sectional areas of swells, the shapes of noses of swells, and, for on ridge hotspots, the amount of ascending material needed to supply the length of ridge axis which has abnormally high elevation and thick crust. The buoyancy fluxes range over a factor of 20 with Hawaii, 8.7 Mg s -1, the largest. The buoyancy flux for Iceland is 1.4 Mg s -1 which is similar to the flux of Cape Verde. The excess temperature of both on-ridge and off-ridge hotspots is around the 200oC value inferred from petrology but is not tightly constrained by geophysical considerations. This observation, the similarity of the fluxes of on-ridge and offridge plumes, and the tendency for hotspots to cross the ridge indicate that similar plumes are likely to cause both types of hotspots. The buoyancy fluxes of 37 hotspots are estimated; the global buoyancy flux is 50 Mg s -1, which is equivalent to a globally averaged surface heat flow of 4 mWm -2 from core sources and would cool the core at a rate of 50 o C b.y. -1. Based on a thermal model and the assumption that the likelihood of subduction is independent of age, most of the heat from hotspots is implaced in the lower lithosphere and later subducted. I.NTRODUCWION ridge plumes using Iceland as an example. The geometry of flow implied by the assumed existence of a low viscosity Linear seamount chains, such as the Hawaiian Islands, are asthenospheric channel is illustrated by this exercise. Then the frequently attributed to mantle plumes which ascend from deep methods for obtaining the flux of plumes on a rapidly moving in the Earth, perhaps the core-mantle boundary. The excessive plate are discussed with Hawaii as an example. These methods volcanism of on-ridge hotspots, such as Iceland, is also often involve determining the flux from the plume from the crossattributed to plumes. If on-ridge and midplate hotspots are sectional area of the swell and taking advantage of the kinematreally manifestations of the same phenomenon, one would ics of the interaction of asthenospheric flow away from the expect that the temperature and flux of the upwelling material plume and asthenospheric flow induced by the drag of the would be similar under both features. In particular, the core- lithospheric plate. The methods for extending this approach to mantle boundary is expected to be nearly isothermal so that the hotspots on slowly moving plates are then discussed which Cape temperature of plumes ascending from the basal boundary layer Verde as an example. An estimate of the global mass and heat should be the same globally provided that cooling by entrain- transfer by plumes is then obtained by applying the methods to ment of nearby material and thermal conduction are minor. 34 additional hotspots. The magnitude of this total estimated Finally, the global heat loss from plumes should imply a reason- flux is compatible with the heat flux expected from cooling the

1,087 citations

Journal ArticleDOI
TL;DR: In this paper, a simplified model of continental extension including lower crustal flow is developed, which employs the thin sheet approximation in estimating lithospheric yield strength and gravitational buoyancy forces arising from lateral variations in crustal thickness and temperature.
Abstract: A simplified model of continental extension including lower crustal flow is developed. The model employs the thin sheet approximation in estimating lithospheric yield strength and gravitational buoyancy forces arising from lateral variations in crustal thickness and temperature. The effect of advection and diffusion of heat on the temperature structure and yield strength of the extending region is calculated. The viscosity of the lower crust, which controls its rate of flow, is estimated in a manner consistent with the yield strength calculation. The change in the force required to extend the lithosphere is calculated after a finite amount of extension. When this force increases, the zone of extension is assumed to widen; when it decreases, the extension remains localized. Material parameters affecting the model results are the density difference between the crust and mantle, the gradient of brittle yield stress with depth, the abundance of heat-producing elements within the crust, and the ductile strengths of the crust and mantle as a functions of temperature and strain rate. The model predicts three distinct modes of extension depending on the model crustal thickness, heat flow, and strain rate. The modes are (1) core complex mode (concentrated upper crustal extension with lower crustal thinning over a broad area and any mantle lithosphere extending in a local area), (2) wide rift mode (uniform crustal and mantle lithospheric thinning over a width greater than the lithospheric thickness), and (3) narrow rift mode (concentrated crustal and mantle lithospheric extension). Models with a dry olivine mantle rheology and a dry quartz or dry anorthosite crustal rheology are consistent with geologic observations of crustal thickness and heat flow for all three extensional modes. An analysis of the force changes due to extension, ignoring conduction of heat, is carried out to give greater insight into how variations in crust and mantle rheologic parameters affect model results. Crustal rheologies several orders of magnitude stronger or weaker than dry quartz give results inconsistent with observations. The model implies a temporal progression from core complex mode to wide rift mode to narrow rift mode. Data from the southern Basin and Range Province are consistent with this progression.

869 citations

References
More filters
Book
01 Jan 1962
TL;DR: Scholars from Egypt, Germany and the US review and analyze the results of work carried out on the geology of Egypt as mentioned in this paper, including geomorphology and evolution of landscape, tectonics, geophysical regime, volcanicity, Precambrian geology, geologic history and paleogeography, paleontology of selected taxa.
Abstract: Scholars from Egypt, Germany and the US review and analyze the results of work carried out on the geology of Egypt: geomorphology and evolution of landscape, tectonics, geophysical regime, volcanicity, Precambrian geology, geologic history and paleogeography, paleontology of selected taxa, ore depos

2,054 citations

01 Nov 1977
TL;DR: A data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors has been inverted to yield a new instantaneous plate motion model, designated Relative Motion 2 (RM2).
Abstract: A data set comprising 110 spreading rates, 78 transform fault azimuths, and 142 earthquake slip vectors has been inverted to yield a new instantaneous plate motion model, designated Relative Motion 2 (RM2). The model represents a considerable improvement over our previous estimate, RM1 [Minster et al., 1974]. The mean averaging interval for the spreading rate data has been reduced to less than 3 m.y. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. The model systematically misfits data along the India-Antarctica and Pacific-India plate boundaries. We hypothesize that these discrepancies are manifestations of internal deformation within the Indian plate; the data are compatible with northwest-southeast compression across the Ninetyeast Ridge at a rate of about 1 cm/yr. RM2 also fails to satisfy the east-west trending transform fault azimuths observed in the French-American Mid-Ocean Undersea Study area, which is shown to be a consequence of closure constraints about the Azores triple junction. Slow movement between North and South America is required by the data set, although the angular velocity vector describing this motion remains poorly constrained. The existence of a Bering plate, postulated in our previous study, is not necessary if we accept the proposal of Engdahl and others that the Aleutian slip vector data are biased by slab effects. Absolute motion models are derived from several kinematical hypotheses and compared with the data from hot spot traces younger than 10 m.y. Although some of the models are inconsistent with the Wilson-Morgan hypothesis, the overall resolving power of the hot spot data is poor, and the directions of absolute motion for the several slower-moving plates are not usefully constrained.

2,013 citations

Journal ArticleDOI
TL;DR: In this article, a data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2.
Abstract: A data set comprising 110 spreading rates, 78 transform fault azimuths and 142 earthquake slip vectors was inverted to yield a new instantaneous plate motion model, designated RM2. The mean averaging interval for the relative motion data was reduced to less than 3 My. A detailed comparison of RM2 with angular velocity vectors which best fit the data along individual plate boundaries indicates that RM2 performs close to optimally in most regions, with several notable exceptions. On the other hand, a previous estimate (RM1) failed to satisfy an extensive set of new data collected in the South Atlantic Ocean. It is shown that RM1 incorrectly predicts the plate kinematics in the South Atlantic because the presently available data are inconsistent with the plate geometry assumed in deriving RM1. It is demonstrated that this inconsistency can be remedied by postulating the existence of internal deformation with the Indian plate, although alternate explanations are possible.

2,005 citations

Journal ArticleDOI
24 Jul 1965-Nature
TL;DR: In this article, the authors proposed the notion of dextral transform faults, which can be seen as a pair of half-shears joined end-to-end, which is the case of the San Andreas Transform Fault.
Abstract: T and half-shears. Many geologists1 have maintained that movements of the Earth's crust are concentrated in mobile belts, which may take the form of mountains, mid-ocean ridges or major faults with large horizontal movements. These features and the seismic activity along them often appear to end abruptly, which is puzzling. The problem has been difficult to investigate because most terminations lie in ocean basins. This article suggests that these features are not isolated, that few come to dead ends, but that they are connected into a continuous network of mobile belts about the Earth which divide the surface into several large rigid plates (Fig. I). Any feature at its apparent termination may be transformed into another feature of one of the other two types. For example, a fault may be transformed into a mid-ocean ridge as illustrated in Fig. 2a. At the point of transformation the horizontal shear motion along the fault ends abruptly by being changed into an expanding tensional motion across the ridge or rift with a change in seismicity. A junction where one feature changes into another is here called a transform. This type and two others illustrated in Figs. 2b and c may also be termed half-shears (a name suggested in conversation by Prof. J. D. Bernal). Twice as many types of half-shears involve mountains as ridges, because mountains are asymmetrical whereas ridgos have bilateral symmetry. This way of abruptly ending large horizontal shear motions is offered as an explanation of what has long been recognized as a puzzling feature of large faults like the San Andreas. Another type of transform whereby a mountain is transformed into a mid-ocean ridge was suggested by S. W. Carey when he proposed that the Pyrenees Mountains were compressed because of the rifting open of the Bay of Biscay (presumably by the formation of a midocean ridge a.long its axis). The types illustrated are all dextra.l, but equivalent sinistral types exist. In this article the term 'ridge' will be used to mean midocean ridge and also rise (where that term has been used meaning mid-ocean ridge, as by Menard\" in the Pacific basin). The terms mountains and mountain system may include island arcs. An arc is described as being convex or concave depending on which face is first reached when proceeding in the direction indicated by an arrow depicting relative motion (Figs. 2 and 3). The word fault may mean a system of several closely related faults. Transform faults. Faults in which the displacement suddenly stops or changes form and direction are not true transcurrent faults. It is proposed that a separate class of horizontal shear faults exists which terminate abruptly at both ends, but which nevertheless may show great displacements. Each may be thought of as a pair of half. shears joined end to end. Any combination of pairs of the three dextral half-shears may be joined giving rise to the six types illustrated in Fig. 3. Another six sinistral forms can also exist. The name transform fault is proposed for the class, and members may be described in terms of the features which they connect (for example, dextral transform fault, ridge--convex arc type). The distinctions between types might appear trivial until the variation in the habits of growth of the different types is considered as is shown in Fig. 4. These distinctions are that ridges expand to produce new crust, thus leaving residual inactive traces in the topography of their former positions. On the other hand oceanic crust moves down under island arcs absorbing old crust so that they leave no traces of past positions. The convex sides of arcs thus advance. For these reasons transform faults of types a, b and d in Fig. 4 grow in total width, type f diminishes and the behaviour of types c and e is indeterminate. It is significant that the direction of motion on trarn,form faults of the type shown in Fig. 3a is the reverse of that required to offset the ridge. This is a fundamental difference between transform and transcurrent faulting.

1,137 citations

Journal ArticleDOI
TL;DR: The structure along the Dead Sea transform (rift) is related to the motions of the Sinai and Arabia plates which border it, and to the irregularities of their boundaries as mentioned in this paper, and the structures were formed mainly during the last 40 km of slip, which probably occurred in the Plio-Pleistocene.

897 citations