scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Platinum Nanoparticle Shape Effects on Benzene Hydrogenation Selectivity

18 Sep 2007-Nano Letters (American Chemical Society)-Vol. 7, Iss: 10, pp 3097-3101
TL;DR: Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide and the catalytic selectivity was found to be strongly affected by the nanoparticle shape.
Abstract: Benzene hydrogenation was investigated in the presence of a surface monolayer consisting of Pt nanoparticles of different shapes (cubic and cuboctahedral) and tetradecyltrimethylammonium bromide (TTAB). Infrared spectroscopy indicated that TTAB binds to the Pt surface through a weak C-H...Pt bond of the alkyl chain. The catalytic selectivity was found to be strongly affected by the nanoparticle shape. Both cyclohexane and cyclohexene product molecules were formed on cuboctahedral nanoparticles, whereas only cyclohexane was produced on cubic nanoparticles. These results are the same as the product selectivities obtained on Pt(111) and Pt(100) single crystals in earlier studies. The apparent activation energy for cyclohexane production on cubic nanoparticles is 10.9 +/- 0.4 kcal/mol, while for cuboctahedral nanoparticles, the apparent activation energies for cyclohexane and cyclohexene production are 8.3 +/- 0.2 and 12.2 +/- 0.4 kcal/mol, respectively. These activation energies are lower, and corresponding turnover rates are three times higher than those obtained with single-crystal Pt surfaces.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals, including a brief introduction to nucleation and growth within the context of metal Nanocrystal synthesis, followed by a discussion of the possible shapes that aMetal nanocrystal might take under different conditions.
Abstract: Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

4,927 citations

Journal ArticleDOI
TL;DR: This Review will compare the results obtained from different systems and try to give a picture on how different types of metal species work in different reactions and give perspectives on the future directions toward better understanding of the catalytic behavior of different metal entities in a unifying manner.
Abstract: Metal species with different size (single atoms, nanoclusters, and nanoparticles) show different catalytic behavior for various heterogeneous catalytic reactions. It has been shown in the literature that many factors including the particle size, shape, chemical composition, metal–support interaction, and metal–reactant/solvent interaction can have significant influences on the catalytic properties of metal catalysts. The recent developments of well-controlled synthesis methodologies and advanced characterization tools allow one to correlate the relationships at the molecular level. In this Review, the electronic and geometric structures of single atoms, nanoclusters, and nanoparticles will be discussed. Furthermore, we will summarize the catalytic applications of single atoms, nanoclusters, and nanoparticles for different types of reactions, including CO oxidation, selective oxidation, selective hydrogenation, organic reactions, electrocatalytic, and photocatalytic reactions. We will compare the results o...

2,700 citations

Journal ArticleDOI
05 Jun 2009-Science
TL;DR: Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution showed relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell.
Abstract: Controlling the morphology of Pt nanostructures can provide a great opportunity to improve their catalytic properties and increase their activity on a mass basis. We synthesized Pd-Pt bimetallic nanodendrites consisting of a dense array of Pt branches on a Pd core by reducing K2PtCl4 with L-ascorbic acid in the presence of uniform Pd nanocrystal seeds in an aqueous solution. The Pt branches supported on faceted Pd nanocrystals exhibited relatively large surface areas and particularly active facets toward the oxygen reduction reaction (ORR), the rate-determining step in a proton-exchange membrane fuel cell. The Pd-Pt nanodendrites were two and a half times more active on the basis of equivalent Pt mass for the ORR than the state-of-the-art Pt/C catalyst and five times more active than the first-generation supportless Pt-black catalyst.

2,695 citations

Journal ArticleDOI
03 Mar 2008-Small
TL;DR: In this paper, an overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes.
Abstract: Colloidal metal nanoparticles are emerging as key materials for catalysis, plasmonics, sensing, and spectroscopy. Within these applications, control of nanoparticle shape lends increasing functionality and selectivity. Shape-controlled nanocrystals possess well-defined surfaces and morphologies because their nucleation and growth are controlled at the atomic level. An overall picture of shaped metal particles is presented, with a particular focus on solution-based syntheses for the noble metals. General strategies for synthetic control are discussed, emphasizing key factors that result in anisotropic, nonspherical growth such as crystallographically selective adsorbates and seeding processes.

2,203 citations

Journal ArticleDOI
TL;DR: The design of a high-temperature-stable model catalytic system that consists of a Pt metal core coated with a mesoporous silica shell and the design concept used in the Pt@mSiO(2) core-shell catalyst can be extended to other metal/metal oxide compositions.
Abstract: Recent advances in colloidal synthesis enabled the precise control of the size, shape and composition of catalytic metal nanoparticles, enabling their use as model catalysts for systematic investigations of the atomic-scale properties affecting catalytic activity and selectivity. The organic capping agents stabilizing colloidal nanoparticles, however, often limit their application in high-temperature catalytic reactions. Here, we report the design of a high-temperature-stable model catalytic system that consists of a Pt metal core coated with a mesoporous silica shell (Pt@mSiO2). Inorganic silica shells encaged the Pt cores up to 750 ∘C in air and the mesopores providing direct access to the Pt core made the Pt@mSiO2 nanoparticles as catalytically active as bare Pt metal for ethylene hydrogenation and CO oxidation. The high thermal stability of Pt@mSiO2 nanoparticles enabled high-temperature CO oxidation studies, including ignition behaviour, which was not possible for bare Pt nanoparticles because of their deformation or aggregation. The results suggest that the Pt@mSiO2 nanoparticles are excellent nanocatalytic systems for high-temperature catalytic reactions or surface chemical processes, and the design concept used in the Pt@mSiO2 core–shell catalyst can be extended to other metal/metal oxide compositions. Colloidal synthesis can help to precisely control the shape and composition of catalytic metal nanoparticles, but it has so far proved difficult to use these particles in high-temperature reactions. Core–shell structures capable of isolating Pt-mesoporous silica nanoparticles have now been shown to be catalytically active for ethylene hydrogenation and CO oxidation at high temperature.

1,344 citations

References
More filters
Journal ArticleDOI
R. Van Hardeveld1, F. Hartog1
TL;DR: In this paper, the number of surface atoms at the surface of a metal crystal can be differentiated according to the number (j) and arrangement of their nearest neighbours in the crystal.

1,077 citations

Journal ArticleDOI
08 Sep 2001-Langmuir
TL;DR: The surface structure of gold nanorods capped with cationic surfactants in water was studied by FTIR, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM).
Abstract: The surface structure of gold nanorods (NRs) capped with cationic surfactants in water was studied by FTIR, thermogravimetric analysis (TGA), and transmission electron microscopy (TEM). For gold nanorods, the FTIR results show the formation of new bands, which indicate binding of the surfactant headgroup to the surface of the NR. These bands are stable at temperatures as high as 350 °C. For a surfactant mixture (used as capping material), TGA shows a weak weight loss peak at 235 °C and a strong peak at 298 °C assigned to the surfactant molecules in monomer and aggregated forms, respectively. For gold nanorods, three weight loss peaks at about 230, 273, and 344 °C are observed. For gold nanospheres (NSs), TGA shows a strong mass loss at 225 °C and two weak mass loss peaks at 255 and 288 °C. The released material after combustion in the TGA process was analyzed by FTIR spectroscopy and found to be CO2. Our results suggest the following for both NRs and NSs: (1) There are two different binding modes for the...

797 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived geometric shape models for spheres, cubes, and disks which gave the EXAFS average coordination number for first, second, and third coordination spheres as a function of cluster size.

276 citations

Journal ArticleDOI
TL;DR: In this article, a modified polyol process with the addition of silver ions was used to synthesize monodisperse platinum nanoparticles with well-defined faceting for use in low temperature selective hydrogenation reactions.
Abstract: Monodisperse platinum nanoparticles with well-defined faceting have been synthesized by a modified polyol process with the addition of silver ions. Pt nanoparticles are encapsulated in mesoporous silica during in situ hydrothermal growth of the high surface area support. Removal of the surface regulating polymer, poly(vinylpyrrolidone), was achieved using thermal oxidation-reduction treatments. Catalysts were active for ethylene hydrogenation after polymer removal. Rates for ethylene hydrogenation decreased in accordance with the amount of Ag retained in the Pt nanoparticles after purification. Ag is most likely present on the Pt particle surface as small clusters. Future prospects for these catalysts for use in low temperature selective hydrogenation reactions are discussed.

230 citations

Journal ArticleDOI
TL;DR: In this article, the authors performed vibrational spectroscopy and kinetic measurements during cyclohexene hydrogenation/dehydrogenation over a range of pressures (10 −8 −5 Torr) and temperatures (300-500 K) on the Pt(1.0) surface.

49 citations