scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polarization controlled photovoltaic and self-powered photodetector characteristics in Pb-free ferroelectric thin film

24 Jan 2019-APL Materials (AIP Publishing LLCAIP Publishing)-Vol. 7, Iss: 1, pp 011106
TL;DR: In this article, a switchable and large PV effect is demonstrated in a Pb-free ferroelectric 0.5Ba(Zr0.7Ca0.2Ti0.3)TiO3 (BZT-BCT) thin film fabricated by a pulsed laser deposition technique.
Abstract: Ferroelectrics are considered next generation photovoltaic (PV) materials. In this work, a switchable and large PV effect is demonstrated in a Pb-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 (BZT-BCT) thin film fabricated by a pulsed laser deposition technique. The material shows a remarkable PV output of 0.81 V due to its morphotropic phase boundary composition. The observed PV effect is analyzed on the basis of the interfacial Schottky barrier and bulk depolarization field. The poling dependent PV studies revealed that although the Schottky and depolarization field contribute to the PV effect, the latter dominates the PV response beyond the coercive field. Additionally, the importance of this compound in the field of a self-biased photodetector is elucidated in terms of calculated photodetector parameters such as responsivity and detectivity. The explored results will bring significant advancement in the field of ferroelectric PV, UV solid state detector applications and also give an additional dimension to the multifunctional ability of the BZT-BCT system.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history as mentioned in this paper, and the recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) emphasises that polar semiconductors can be used in conventional photovoltaic architectures.
Abstract: The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history. This includes the first observations of the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors can be used in conventional photovoltaic architectures. We review developments in this field, with a particular emphasis on the materials known to display the APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical analysis is complemented with first-principles calculation of the underlying electronic structure. In addition to discussing the implications of a ferroelectric absorber layer, and the solid state theory of polarisation (Berry phase analysis), design principles and opportunities for high-efficiency ferroelectric photovoltaics are presented.

248 citations

Journal Article
TL;DR: In this paper, an efficient and low-cost method to achieve high-performance "visible-blind" microscale ZnS nanobelt-based ultraviolet (UV)-light sensors without using a lithography technique, by increasing the surface areas exposed to light, is reported.
Abstract: Although there has been significant progress in the fabrication and performance optimization of one-dimensional nanostructure-based photodetectors, it is still a challenge to develop an effective and low-cost device with high performance characteristics, such as a high photocurrent/ dark-current ratio, photocurrent stability, and fast time response. Herein an efficient and low-cost method to achieve high-performance 'visible-blind' microscale ZnS nanobelt-based ultraviolet (UV)-light sensors without using a lithography technique, by increasing the nanobelt surface areas exposed to light, is reported. The devices exhibit about 750 times enhancement of a photocurrent compared with individual nanobelt-based sensors and an ultrafast time response. The photocurrent stability and time response to UV-light do not change significantly when a channel distance is altered from 2 to 100 μm or the sensor environment changes from air to vacuum and different measurement temperatures (60 and 150°C). The photoelectrical behaviors can be recovered well after returning the measurement conditions to air and room temperature again. The low cost and high performance of the resultant ZnS nanobelt photodetectors guarantee their highest potential for visible-blind UV-light sensors working in the UV-A band.

204 citations

Journal ArticleDOI
TL;DR: The fabrication of self-powered, carbon dot (CD) enhanced, flexible ZnO/graphite heterojunction based UV detector, where cellulose paper has been used as the substrate with Schottky characteristics is reported.
Abstract: The fabrication of flexible as well as self-powered optoelectronic devices is a growing and challenging area of research Some scientists have reported the fabrication of either flexible or self-powered photodetectors recently However, most of the literature studies fail to report the fabrication of self-powered as well as flexible photodetectors This study reports the fabrication of self-powered, carbon dot (CD)-enhanced, flexible ZnO/graphite heterojunction-based UV detector where cellulose paper has been used as the substrate A detailed study on the crystallinity and the defects of the ZnO nanorods has been done with appropriate characterizations The CD-enhanced ZnO/graphite heterojunction showed Schottky characteristics The Schottky parameters such as the barrier height, ideality factor, and the series resistance have also been calculated using the Cheung-Cheung method The observed values of barrier height, ideality factor, and the series resistance are 074 eV, 374, and 503 kΩ, respectively The transient response at self-powered condition has been demonstrated The response time and the recovery time at self-powered condition have also been calculated with the help of the transient response, and those values are ∼2 and ∼32 s, respectively The responsivity and the specific detectivity of the fabricated UV detector have been calculated as 957 mA/W and 427×108 Jones, respectively, at 330 nm wavelength, which is quite comparable with literature-reported values, considering a self-powered photodetector

36 citations

Journal ArticleDOI
TL;DR: In this article, a polycrystalline BiFeO3 (BFO) thin film on a transparent substrate also has the ferroelectric switchable diode and photovoltaic effects.

28 citations

References
More filters
Journal ArticleDOI
26 Aug 2016
TL;DR: In this paper, the authors survey the history, development and recent progress in understanding the mechanisms of the bulk photovoltaic effect (BPVE), with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry.
Abstract: The bulk photovoltaic effect (BPVE) refers to the generation of a steady photocurrent and above-bandgap photovoltage in a single-phase homogeneous material lacking inversion symmetry. The mechanism of BPVE is decidedly different from the typical p–n junction-based photovoltaic mechanism in heterogeneous materials. Recently, there has been renewed interest in ferroelectric materials for solar energy conversion, inspired by the discovery of above-bandgap photovoltages in ferroelectrics, the invention of low bandgap ferroelectric materials and the rapidly improving power conversion efficiency of metal halide perovskites. However, as long as the nature of the BPVE and its dependence on composition and structure remain poorly understood, materials engineering and the realisation of its true potential will be hampered. In this review article, we survey the history, development and recent progress in understanding the mechanisms of BPVE, with a focus on the shift current mechanism, an intrinsic BPVE that is universal to all materials lacking inversion symmetry. In addition to explaining the theory of shift current, materials design opportunities and challenges will be discussed for future applications of the BPVE.

273 citations

Journal ArticleDOI
TL;DR: In this article, a model for metal-ferroelectric-metal heterostructures with Schottky contacts is proposed, which adapts the general theories of metal-semiconductor rectifying contacts for the particular case of metal ferroelectric contact by introducing a sheet of surface charge located at a finite distance from the electrode interface.
Abstract: A model for metal-ferroelectric-metal heterostructures with Schottky contacts is proposed. The model adapts the general theories of metal-semiconductor rectifying contacts for the particular case of metal-ferroelectric contact by introducing the ferroelectric polarization as a sheet of surface charge located at a finite distance from the electrode interface, a deep trapping level of high concentration, and the static and dynamic values of the dielectric constant. Consequences of the proposed model on relevant quantities of the Schottky contact such as builtin voltage, charge density, and depletion width, as well as on the interpretation of the current-voltage and capacitance-voltage characteristics are discussed in detail.

266 citations

Journal ArticleDOI
TL;DR: The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history as mentioned in this paper, and the recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) emphasises that polar semiconductors can be used in conventional photovoltaic architectures.
Abstract: The application of ferroelectric materials (i.e. solids that exhibit spontaneous electric polarisation) in solar cells has a long and controversial history. This includes the first observations of the anomalous photovoltaic effect (APE) and the bulk photovoltaic effect (BPE). The recent successful application of inorganic and hybrid perovskite structured materials (e.g. BiFeO3, CsSnI3, CH3NH3PbI3) in solar cells emphasises that polar semiconductors can be used in conventional photovoltaic architectures. We review developments in this field, with a particular emphasis on the materials known to display the APE/BPE (e.g. ZnS, CdTe, SbSI), and the theoretical explanation. Critical analysis is complemented with first-principles calculation of the underlying electronic structure. In addition to discussing the implications of a ferroelectric absorber layer, and the solid state theory of polarisation (Berry phase analysis), design principles and opportunities for high-efficiency ferroelectric photovoltaics are presented.

248 citations

Journal ArticleDOI
TL;DR: In this paper, anodic TiO2 nanotube arrays prepared by electrochemical anodization were used to fabricate ultraviolet (UV) photodetectors, which exhibit the highest UV sensitive photoconductance due to the pure anatase phase of the TiO 2.
Abstract: Anodic TiO2 nanotube arrays prepared by electrochemical anodization were used to fabricate ultraviolet (UV) photodetectors. The devices annealed at 450 degrees C exhibit the highest UV-sensitive photoconductance due to the pure anatase phase of the TiO2. The large surface area and one-dimensional nanostructure of the TiO2 nanotubes lead to great photosensitivity (more than 4 orders of magnitude) and fast response with rise time and decay time of 0.5 and 0.7 s, respectively. High responsivity of 13 A/W is found under 1.06 mW/cm(2) UV (lambda = 312 nm) illumination at 2.5 V bias, which is much higher than those of commercial UV photodetectors. The high responsivity mainly comes from the internal gain induced by the desorption of oxygen from the nanotube surfaces and the reduction of the Schottky barrier at TiO2/Ag contact under UV illumination. The devices are promising for large-area UV photodetctor applications.

233 citations

Journal ArticleDOI
TL;DR: Ultrahigh energy storage density of 52.4 J cm-3 with optimistic efficiency of 72.3% is achieved by interface engineering of epitaxial lead-free oxide multilayers at room temperature with excellent thermal stability.
Abstract: Ultrahigh energy storage density of 52.4 J cm-3 with optimistic efficiency of 72.3% is achieved by interface engineering of epitaxial lead-free oxide multilayers at room temperature. Moreover, the excellent thermal stability of the performances provides solid basis for widespread applications of the thin film systems in modern electronic and power modules in harsh working environments.

233 citations