scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polarization entangled state measurement on a chip

01 May 2011-Vol. 105, Iss: 20, pp 200503
TL;DR: This work reports the realization of an integrated beam splitter able to support polarization-encoded qubits and demonstrates quantum interference with polarization-entangled states and singlet state projection.
Abstract: We report the realization of an integrated beam splitter able to support polarization-encoded qubits. Using this device, we demonstrate quantum interference with polarization-entangled states and singlet state projection.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of the progress in photonic quantum information processing can be found in this article, where the emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication, and quantum computation with linear optics.
Abstract: Multiphoton interference reveals strictly nonclassical phenomena. Its applications range from fundamental tests of quantum mechanics to photonic quantum information processing, where a significant fraction of key experiments achieved so far comes from multiphoton state manipulation. The progress, both theoretical and experimental, of this rapidly advancing research is reviewed. The emphasis is given to the creation of photonic entanglement of various forms, tests of the completeness of quantum mechanics (in particular, violations of local realism), quantum information protocols for quantum communication (e.g., quantum teleportation, entanglement purification, and quantum repeater), and quantum computation with linear optics. The scope of the review is limited to ``few-photon'' phenomena involving measurements of discrete observables.

1,156 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a survey of photonic quantum simulation and discuss the prospects for tackling outstanding problems in physics, chemistry, and biology, as well as their potential for solving problems that are intractable on conventional computers.
Abstract: Quantum simulators are controllable quantum systems that can be used to mimic other quantum systems. They have the potential to enable the tackling of problems that are intractable on conventional computers. The photonic quantum technology available today is reaching the stage where significant advantages arise for the simulation of interesting problems in quantum chemistry, quantum biology and solid-state physics. In addition, photonic quantum systems also offer the unique benefit of being mobile over free space and in waveguide structures, which opens new perspectives to the field by enabling the natural investigation of quantum transport phenomena. Here, we review recent progress in the field of photonic quantum simulation, which should break the ground towards the realization of versatile quantum simulators. Quantum optics has played an important role in the exploration of foundational issues in quantum mechanics, and in using quantum effects for information processing and communications purposes. Photonic quantum systems now also provide a valuable test bed for quantum simulations. This article surveys the first generation of such experiments, and discusses the prospects for tackling outstanding problems in physics, chemistry and biology.

930 citations

Journal ArticleDOI
TL;DR: Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer and emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.
Abstract: Processing of materials by ultrashort laser pulses has evolved significantly over the last decade and is starting to reveal its scientific, technological and industrial potential. In ultrafast laser manufacturing, optical energy of tightly focused femtosecond or picosecond laser pulses can be delivered to precisely defined positions in the bulk of materials via two-/multi-photon excitation on a timescale much faster than thermal energy exchange between photoexcited electrons and lattice ions. Control of photo-ionization and thermal processes with the highest precision, inducing local photomodification in sub-100-nm-sized regions has been achieved. State-of-the-art ultrashort laser processing techniques exploit high 0.1–1 μm spatial resolution and almost unrestricted three-dimensional structuring capability. Adjustable pulse duration, spatiotemporal chirp, phase front tilt and polarization allow control of photomodification via uniquely wide parameter space. Mature opto-electrical/mechanical technologies have enabled laser processing speeds approaching meters-per-second, leading to a fast lab-to-fab transfer. The key aspects and latest achievements are reviewed with an emphasis on the fundamental relation between spatial resolution and total fabrication throughput. Emerging biomedical applications implementing micrometer feature precision over centimeter-scale scaffolds and photonic wire bonding in telecommunications are highlighted.

835 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing.
Abstract: Quantum technologies comprise an emerging class of devices capable of controlling superposition and entanglement of quantum states of light or matter, to realize fundamental performance advantages over ordinary classical machines. The technology of integrated quantum photonics has enabled the generation, processing and detection of quantum states of light at a steadily increasing scale and level of complexity, progressing from few-component circuitry occupying centimetre-scale footprints and operating on two photons, to programmable devices approaching 1,000 components occupying millimetre-scale footprints with integrated generation of multiphoton states. This Review summarizes the advances in integrated photonic quantum technologies and its demonstrated applications, including quantum communications, simulations of quantum chemical and physical systems, sampling algorithms, and linear-optic quantum information processing. This Review covers recent progress in integrated quantum photonics (IQP) technologies and their applications. The challenges and opportunities of realizing large-scale, monolithic IQP circuits for future quantum applications are discussed.

596 citations

Journal ArticleDOI
TL;DR: In this article, the interplay between the Anderson localization mechanism and the bosonic/fermionic symmetry of the wave function was investigated for a discrete quantum walk affected by position-dependent disorder.
Abstract: Researchers observe Anderson localization for pairs of polarization-entangled photons in a discrete quantum walk affected by position-dependent disorder. By exploiting polarization entanglement of photons to simulate different quantum statistics, they experimentally investigate the interplay between the Anderson localization mechanism and the bosonic/fermionic symmetry of the wave function.

450 citations


Cites background from "Polarization entangled state measur..."

  • ...[18] has been adopted (these devices are known to allow the propagation of polarization entangled states [35])....

    [...]

References
More filters
Book ChapterDOI

[...]

01 Jan 2012

139,059 citations


"Polarization entangled state measur..." refers background in this paper

  • ...Very recently it was reported [6,7] that silica waveguide circuits integrated onto silicon chips can be successfully used to realize key components of quantum photonic devices....

    [...]

Journal ArticleDOI
TL;DR: The results suggest that multiphoton interactions occur in the glasses and that it may be possible to write three-dimensional optical circuits in bulk glasses with such a focused laser beam technique.
Abstract: With the goal of being able to create optical devices for the telecommunications industry, we investigated the effects of 810-nm, femtosecond laser radiation on various glasses. By focusing the laser beam through a microscope objective, we successfully wrote transparent, but visible, round-elliptical damage lines inside high-silica, borate, soda lime silicate, and fluorozirconate (ZBLAN) bulk glasses. Microellipsometer measurements of the damaged region in the pure and Ge-doped silica glasses showed a 0.01–0.035 refractive-index increase, depending on the radiation dose. The formation of several defects, including Si E′ or Ge E′ centers, nonbridging oxygen hole centers, and peroxy radicals, was also detected. These results suggest that multiphoton interactions occur in the glasses and that it may be possible to write three-dimensional optical circuits in bulk glasses with such a focused laser beam technique.

2,500 citations


"Polarization entangled state measur..." refers methods in this paper

  • ...Here we show how to guide and manipulate photons in any polarization state by adopting a recently introduced technique, based on the use of ultrashort laser pulses, for direct writing of photonic structures in a bulk glass [ 6 ,7]....

    [...]

Journal ArticleDOI
10 Mar 2005-Nature
TL;DR: The implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.
Abstract: Standard quantum computation is based on sequences of unitary quantum logic gates that process qubits. The one-way quantum computer proposed by Raussendorf and Briegel is entirely different. It has changed our understanding of the requirements for quantum computation and more generally how we think about quantum physics. This new model requires qubits to be initialized in a highly entangled cluster state. From this point, the quantum computation proceeds by a sequence of single-qubit measurements with classical feedforward of their outcomes. Because of the essential role of measurement, a one-way quantum computer is irreversible. In the one-way quantum computer, the order and choices of measurements determine the algorithm computed. We have experimentally realized four-qubit cluster states encoded into the polarization state of four photons. We characterize the quantum state fully by implementing experimental four-qubit quantum state tomography. Using this cluster state, we demonstrate the feasibility of one-way quantum computing through a universal set of one- and two-qubit operations. Finally, our implementation of Grover's search algorithm demonstrates that one-way quantum computation is ideally suited for such tasks.

1,058 citations


"Polarization entangled state measur..." refers background in this paper

  • ...One important example is given by states built on many photons [4] and/or many qubits, and by several schemes of one-way optical quantum computing [ 5 ]....

    [...]

Journal ArticleDOI
02 May 2008-Science
TL;DR: These results show that it is possible to directly “write” sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.
Abstract: Quantum technologies based on photons will likely require an integrated optics architecture for improved performance, miniaturization, and scalability. We demonstrate high-fidelity silica-on-silicon integrated optical realizations of key quantum photonic circuits, including two-photon quantum interference with a visibility of 94.8 ± 0.5%; a controlled-NOT gate with an average logical basis fidelity of 94.3 ± 0.2%; and a path-entangled state of two photons with fidelity of >92%. These results show that it is possible to directly “write” sophisticated photonic quantum circuits onto a silicon chip, which will be of benefit to future quantum technologies based on photons, including information processing, communication, metrology, and lithography, as well as the fundamental science of quantum optics.

1,026 citations

Journal ArticleDOI
TL;DR: In this paper, a waveguide circuit is used to generate two-and four-photon entangled states and their interference tuned for a single photon and multiple photons, respectively, in order to achieve adaptive and reconfigurable photonic quantum circuits for all quantum states of light.
Abstract: Precise control of single-photon states and multiphoton entanglement is demonstrated on-chip. Two- and four-photon entangled states have now been generated in a waveguide circuit and their interference tuned. These results open up adaptive and reconfigurable photonic quantum circuits not just for single photons, but for all quantum states of light.

420 citations