scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Polarization reconstruction with a digital micro-mirror device

TL;DR: In this paper, an all-digital technique by implementing a Polarization Grating (PG) which projects a mode into left and right-circular states which are subsequently directed to a Digital Micromirror Device (DMD) which imparts a phase retardance for full polarization acquisition.
Abstract: In this work, Stokes polarimetery is used to extract the polarization structure of optical fields from only four measurements as opposed to the usual six measurements. Here, instead of using static polarization optics, we develop an all-digital technique by implementing a Polarization Grating (PG) which projects a mode into left- and right-circular states which are subsequently directed to a Digital Micromirror Device (DMD) which imparts a phase retardance for full polarization acquisition. We apply our approach in real-time to reconstruct the State of Polarization (SoP) and intra-modal phase of optical modes.
Citations
More filters
References
More filters
Journal ArticleDOI
TL;DR: A tutorial on performing Stokes polarimetry in an all-digital approach, exploiting a modern optical toolkit based on liquid-crystal-on-silicon spatial light modulators and digital micromirror devices.
Abstract: Stokes polarimetry is a mature topic in optics, most commonly performed to extract the polarization structure of optical fields for a range of diverse applications. For historical reasons, most Stokes polarimetry approaches are based on static optical polarization components that must be manually adjusted, prohibiting automated, real-time analysis of fast changing fields. Here we provide a tutorial on performing Stokes polarimetry in an all-digital approach, exploiting a modern optical toolkit based on liquid-crystal-on-silicon spatial light modulators and digital micromirror devices. We explain in a tutorial fashion how to implement two digital approaches, based on these two devices, for extracting Stokes parameters in a fast, cheap, and dynamic manner. After outlining the core concepts, we demonstrate their applicability to the modern topic of structured light, and highlight some common experimental issues. In particular, we illustrate how digital Stokes polarimetry can be used to measure key optical parameters such as the state of polarization, degree of vectorness, and intra-modal phase of complex light fields.

19 citations


"Polarization reconstruction with a ..." refers methods in this paper

  • ...Here, we digitally perform the polarization projections needed when measuring the Stokes parameters [14, 15]....

    [...]