scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polarization sensitive optical coherence tomography in the human eye.

TL;DR: A variety of different applications of this technique are presented in ocular imaging that are ranging from the anterior to the posterior eye segment and the benefits of the method for imaging different diseases as, e.g., age related macula degeneration or glaucoma is demonstrated.
About: This article is published in Progress in Retinal and Eye Research.The article was published on 2011-11-01 and is currently open access. It has received 261 citations till now. The article focuses on the topics: Optical coherence tomography & Posterior Eye Segment.
Citations
More filters
Journal Article
TL;DR: In this article, optical coherence tomography is used for high-resolution, noninvasive imaging of the human retina, including the macula and optic nerve head in normal human subjects.
Abstract: Objective: To demonstrate optical coherence tomography for high-resolution, noninvasive imaging of the human retina. Optical coherence tomography is a new imaging technique analogous to ultrasound B scan that can provide cross-sectional images of the retina with micrometer-scale resolution. Design: Survey optical coherence tomographic examination of the retina, including the macula and optic nerve head in normal human subjects. Settings Research laboratory. Participants: Convenience sample of normal human subjects. Main Outcome Measures: Correlation of optical coherence retinal tomographs with known normal retinal anatomy. Results: Optical coherence tomographs can discriminate the cross-sectional morphologic features of the fovea and optic disc, the layered structure of the retina, and normal anatomic variations in retinal and retinal nerve fiber layer thicknesses with 10- μm depth resolution. Conclusion: Optical coherence tomography is a potentially useful technique for high depth resolution, cross-sectional examination of the fundus.

1,409 citations

Journal Article
TL;DR: In this article, the diffraction tomography theorem is adapted to one-dimensional length measurement and the resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.
Abstract: The diffraction tomography theorem is adapted to one-dimensional length measurement. The resulting spectral interferometry technique is described and the first length measurements using this technique on a model eye and on a human eye in vivo are presented.

1,237 citations

Journal ArticleDOI
TL;DR: The methods used to create OCTA images, the practical applications of OCTA in light of invasive dye‐imaging studies (e.g. fluorescein angiography) and clinical studies demonstrating the utility of OCT a for research and clinical practice are discussed.

621 citations


Cites methods from "Polarization sensitive optical cohe..."

  • ...A dualbeam scanning strategy was proposed to improve the sensitivity in measuring the blood flow for Doppler OCT (Makita, Jaillon et al. 2011, Zotter, Pircher et al. 2011)....

    [...]

Journal Article
TL;DR: A novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution is described and its use for in vivo imaging of blood flow in an animal model is demonstrated.
Abstract: We describe a novel optical system for bidirectional color Doppler imaging of flow in biological tissues with micrometer-scale resolution and demonstrate its use for in vivo imaging of blood flow in an animal model. Our technique, color Doppler optical coherence tomography (CDOCT), performs spatially localized optical Doppler velocimetry by use of scanning low-coherence interferometry. CDOCT is an extension of optical coherence tomography (OCT), employing coherent signal-acquisition electronics and joint time-frequency analysis algorithms to perform flow imaging simultaneous with conventional OCT imaging. Cross-sectional maps of blood flow velocity with <50-μm spatial resolution and <0.6-mm/s velocity precision were obtained through intact skin in living hamster subdermal tissue. This technology has several potential medical applications.

601 citations

Journal Article
TL;DR: In this article, a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample is presented.
Abstract: We present a polarization-sensitive optical coherence-domain reflectometer capable of characterizing the phase retardation between orthogonal linear polarization modes at each reflection point in a birefringent sample. The device is insensitive to the rotation of the sample in the plane perpendicular to ranging. Phase measurement accuracy is ±0.86°, but the reflectometer can distinguish local variations in birefringence as small as 0.05° with a distance resolution of 10.8 μm and a dynamic range of 90 dB. Birefringence-sensitive ranging in a wave plate, an electro-optic modulator, and a calf coronary artery is demonstrated.

601 citations

References
More filters
01 Oct 1999
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,503 citations

Journal ArticleDOI
22 Nov 1991-Science
TL;DR: OCT as discussed by the authors uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way analogous to ultrasonic pulse-echo imaging.
Abstract: A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.

11,568 citations

Journal ArticleDOI
TL;DR: Improved methods of screening and therapy for glaucoma are urgently needed, as it is the second leading cause of vision loss in the world.
Abstract: AIM: To estimate the prevalence of glaucoma among people worldwide. METHODS: Available published data on glaucoma prevalence were reviewed to determine the relation of open angle and angle closure glaucoma with age in people of European, African, and Asian origin. A comparison was made with estimated world population data for the year 2000. RESULTS: The number of people with primary glaucoma in the world by the year 2000 is estimated at nearly 66.8 million, with 6.7 million suffering from bilateral blindness. In developed countries, fewer than 50% of those with glaucoma are aware of their disease. In the developing world, the rate of known disease is even lower. CONCLUSIONS: Glaucoma is the second leading cause of vision loss in the world. Improved methods of screening and therapy for glaucoma are urgently needed.

5,104 citations


"Polarization sensitive optical cohe..." refers background in this paper

  • ...The RNFL is damaged byglaucoma, one of the leading causes of blindness in theworld (Quigley,1996; Thylefors et al.,1995)....

    [...]

01 Jan 1999

2,394 citations

Journal ArticleDOI
TL;DR: Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.
Abstract: A technique called optical coherence tomography (OCT) has been developed for noninvasive cross-sectional imaging in biological systems. OCT uses low-coherence interferometry to produce a two-dimensional image of optical scattering from internal tissue microstructures in a way that is analogous to ultrasonic pulse-echo imaging. OCT has longitudinal and lateral spatial resolutions of a few micrometers and can detect reflected signals as small as approximately 10(-10) of the incident optical power. Tomographic imaging is demonstrated in vitro in the peripapillary area of the retina and in the coronary artery, two clinically relevant examples that are representative of transparent and turbid media, respectively.

2,145 citations