scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Poly(Vinylpyrollidone)- and Selenocysteine-Modified Bi2Se3 Nanoparticles Enhance Radiotherapy Efficacy in Tumors and Promote Radioprotection in Normal Tissues

TL;DR: Improved superoxide dismutase and glutathione peroxidase activities, promoted secretion of cytokines, increased number of white blood cell, and reduced marrow DNA suppression are found after radiation treatment in vivo as a consequence of PVP‐Bi2Se3@Sec NPs treatment.
Abstract: The development of a new generation of nanoscaled radiosensitizers that can not only enhance radiosensitization of tumor tissues, but also increase radioresistance of healthy tissue is highly desirable, but remains a great challenge. Here, this paper reports a new versatile theranostics based on poly(vinylpyrollidone)- and selenocysteine-modified Bi2 Se3 nanoparicles (PVP-Bi2 Se3 @Sec NPs) for simultaneously enhancing radiotherapeutic effects and reducing the side-effects of radiation. The as-prepared nanoparticles exhibit significantly enhanced free-radical generation upon X-ray radiation, and remarkable photothermal effects under 808 nm NIR laser irradiation because of their strong X-ray attenuation ability and high NIR absorption capability. Moreover, these PVP-Bi2 Se3 @Sec NPs are biodegradable. In vivo, part of selenium can be released from NPs and enter the blood circulation system, which can enhance the immune function and reduce the side-effects of radiation in the whole body. As a consequence, improved superoxide dismutase and glutathione peroxidase activities, promoted secretion of cytokines, increased number of white blood cell, and reduced marrow DNA suppression are found after radiation treatment in vivo. Moreover, there is no significant in vitro and in vivo toxicity of PVP-Bi2 Se3 @Sec NPs during the treatment, which demonstrates that PVP-Bi2 Se3 @Sec NPs have good biocompatibility.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the intrinsic biochemical properties of reactive oxygen species (ROS) underlie the mechanisms that regulate various physiological functions of living organisms, and they play an essential role in regulating various physiological function.
Abstract: Reactive oxygen species (ROS) play an essential role in regulating various physiological functions of living organisms. The intrinsic biochemical properties of ROS, which underlie the mechanisms ne...

1,260 citations

Journal ArticleDOI
01 Jun 2018
TL;DR: In this paper, the authors reviewed recent progress in the classification, measurement methods, model and equations, mechanisms, commonly used thermally conductive fillers, and the correlative fabrication methods for the thermallyconductive polymeric composites, aiming to understand and grasp how to enhance the λ value effectively.
Abstract: With the fast-developing miniaturization and integration of microelectronics packaging materials, ultrahigh-voltage electrical devices, light-emitting diodes (LEDs), and in areas which require good heat dissipation and low thermal expansion, the investigations on the polymeric composites with highly thermal conductivities and excellent thermal stabilities are urgently required, which would be beneficial to transferring the heat to the outside of the products, finally to effectively avoid substantial overheating and prolong their working life. Our article reviews recent progress in the classification, measurement methods, model and equations, mechanisms, commonly used thermally conductive fillers, and the correlative fabrication methods for the thermally conductive polymeric composites, aiming to understand and grasp how to enhance the λ value effectively. And future perspectives, focusing scientific problems and technical difficulties of the present thermally conductive polymeric composites are also described and evaluated.

253 citations


Cites background from "Poly(Vinylpyrollidone)- and Selenoc..."

  • ...Polymers possess light weight, high specific strength and modulus, excellent electrical insulating properties, good processability, excellent chemical stability, and low cost [1–6] and have been widely applied in the fields of electronics [7], biology [8], medicine [9], energy [10], and manufacturing industry [11], etc....

    [...]

Journal ArticleDOI
TL;DR: This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions.
Abstract: Studies of nanosized forms of bismuth (Bi)-containing materials have recently expanded from optical, chemical, electronic, and engineering fields towards biomedicine, as a result of their safety, cost-effective fabrication processes, large surface area, high stability, and high versatility in terms of shape, size, and porosity. Bi, as a nontoxic and inexpensive diamagnetic heavy metal, has been used for the fabrication of various nanoparticles (NPs) with unique structural, physicochemical, and compositional features to combine various properties, such as a favourably high X-ray attenuation coefficient and near-infrared (NIR) absorbance, excellent light-to-heat conversion efficiency, and a long circulation half-life. These features have rendered bismuth-containing nanoparticles (BiNPs) with desirable performance for combined cancer therapy, photothermal and radiation therapy (RT), multimodal imaging, theranostics, drug delivery, biosensing, and tissue engineering. Bismuth oxyhalides (BiOx, where X is Cl, Br or I) and bismuth chalcogenides, including bismuth oxide, bismuth sulfide, bismuth selenide, and bismuth telluride, have been heavily investigated for therapeutic purposes. The pharmacokinetics of these BiNPs can be easily improved via the facile modification of their surfaces with biocompatible polymers and proteins, resulting in enhanced colloidal stability, extended blood circulation, and reduced toxicity. Desirable antibacterial effects, bone regeneration potential, and tumor growth suppression under NIR laser radiation are the main biomedical research areas involving BiNPs that have opened up a new paradigm for their future clinical translation. This review emphasizes the synthesis and state-of-the-art progress related to the biomedical applications of BiNPs with different structures, sizes, and compositions. Furthermore, a comprehensive discussion focusing on challenges and future opportunities is presented.

224 citations

Journal ArticleDOI
Jiani Xie1, Linji Gong1, Shuang Zhu1, Yuan Yong1, Zhanjun Gu1, Yuliang Zhao1 
TL;DR: The general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods.
Abstract: Nano-radiosensitization has been a hot concept for the past ten years, and the nanomaterial-mediated tumor radiosensitization method is mainly focused on increasing intracellular radiation deposition by high atomic number (high Z) nanomaterials, particularly gold (Au)-mediated radiation enhancement. Recently, various new nanomaterial-mediated radiosensitive approaches have been successively reported, such as catalyzing reactive oxygen species (ROS) generation, consuming intracellular reduced glutathione (GSH), overcoming tumor hypoxia, and various synergistic radiotherapy ways. These strategies may open a new avenue for enhancing the radiotherapeutic effect and avoiding its side effects. Nevertheless, reviews systematically summarizing these newly emerging methods and their radiosensitive mechanisms are still rare. Therefore, the general strategies of nanomaterial-mediated tumor radiosensitization are comprehensively summarized, particularly aiming at introducing the emerging radiosensitive methods. The strategies are divided into three general parts. First, methods on account of the intrinsic radiosensitive properties of nanoradiosensitizers for radiosensitization are highlighted. Then, newly developed synergistic strategies based on multifunctional nanomaterials for enhancing radiotherapy efficacy are emphasized. Third, nanomaterial-mediated radioprotection approaches for increasing the radiotherapeutic ratio are discussed. Importantly, the clinical translation of nanomaterial-mediated tumor radiosensitization is also covered. Finally, further challenges and outlooks in this field are discussed.

205 citations

Journal ArticleDOI
TL;DR: This review systematically describes the interaction mechanisms between X-rays and nanosystems, and provides an overview of X-ray-sensitive materials and the recent progress on X- Ray-activated nanosSystems for cancer-associated theranostic applications.
Abstract: X-rays are widely applied in clinical medical facilities for radiotherapy (RT) and biomedical imaging. However, the sole use of X-rays for cancer treatment leads to insufficient radiation energy deposition due to the low X-ray attenuation coefficients of living tissues and organs, producing unavoidable excessive radiation doses with serious side effects to healthy body parts. Over the past decade, developments in materials science and nanotechnology have led to rapid progress in the field of X-ray-activated tumor-targeting nanosystems, which are able to tackle even systemic tumors and relieve the burden of exposure to large radiation doses. Additionally, novel imaging contrast agents and techniques have also been developed. In comparison with conventional external light sources (e.g., near infrared), the X-ray technique is ideal for the activation of nanosystems for cancer treatment and biomedical imaging applications due to its nearly unlimited penetration depth in living tissues and organisms. In this review, we systematically describe the interaction mechanisms between X-rays and nanosystems, and provide an overview of X-ray-sensitive materials and the recent progress on X-ray-activated nanosystems for cancer-associated theranostic applications.

190 citations

References
More filters
Journal ArticleDOI
09 Feb 1973-Science
TL;DR: When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H2O2, added glutathione failed to protect the hemoglobin from oxidative damage.
Abstract: When hemolyzates from erythrocytes of selenium-deficient rats were incubated in vitro in the presence of ascorbate or H(2)O(2), added glutathione failed to protect the hemoglobin from oxidative damage. This occurred because the erythrocytes were practically devoid of glutathione-peroxidase activity. Extensively purified preparations of glutathione peroxidase contained a large part of the (75)Se of erythrocytes labeled in vivo. Many of the nutritional effects of selenium can be explained by its role in glutathione peroxidase.

6,893 citations

Journal ArticleDOI
TL;DR: Selenium is needed for the proper functioning of the immune system, and appears to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS.

3,359 citations

01 Jan 2001
TL;DR: The essential trace mineral, selenium, is of fundamental importance to human health as mentioned in this paper, and it is needed for the proper functioning of the immune system, and appears to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS.
Abstract: The essential trace mineral, selenium, is of fundamental importance to human health. As a constituent of selenoproteins, selenium has structural and enzymic roles, in the latter context being best-known as an antioxidant and catalyst for the production of active thyroid hormone. Selenium is needed for the proper functioning of the immune system, and appears to be a key nutrient in counteracting the development of virulence and inhibiting HIV progression to AIDS. It is required for sperm motility and may reduce the risk of miscarriage. Deficiency has been linked to adverse mood states. Findings have been equivocal in linking selenium to cardiovascular disease risk although other conditions involving oxidative stress and inflammation have shown benefits of a higher selenium status. An elevated selenium intake may be associated with reduced cancer risk. Large clinical trials are now planned to confirm or refute this hypothesis. In the context of these health effects, low or diminishing selenium status in some parts of the world, notably in some European countries, is giving cause for concern.

3,068 citations

Journal ArticleDOI
TL;DR: This review critically addresses the extent to which the in vitro significance of oxidative DNA damage has relevance for the pathogenesis of disease, drawing attention to the multiplicity of proteins with repair activities along with a number of poorly considered effects of damage.
Abstract: Oxidative DNA damage is an inevitable consequence of cellular metabolism, with a propensity for increased levels following toxic insult. Although more than 20 base lesions have been identified, only a fraction of these have received appreciable study, most notably 8-oxo-2'deoxyguanosine. This lesion has been the focus of intense research interest and been ascribed much importance, largely to the detriment of other lesions. The present work reviews the basis for the biological significance of oxidative DNA damage, drawing attention to the multiplicity of proteins with repair activities along with a number of poorly considered effects of damage. Given the plethora of (often contradictory) reports describing pathological conditions in which levels of oxidative DNA damage have been measured, this review critically addresses the extent to which the in vitro significance of such damage has relevance for the pathogenesis of disease. It is suggested that some shortcomings associated with biomarkers, along with gaps in our knowledge, may be responsible for the failure to produce consistent and definitive results when applied to understanding the role of DNA damage in disease, highlighting the need for further studies.

2,910 citations

Journal ArticleDOI
24 Mar 1994-Nature
TL;DR: It is concluded that IL-6 production induced by injury or infection is an important in vivo SOS signal which coordinates activities of liver cells, macrophages and lymphocytes.
Abstract: Interleukin-6 (IL-6) is a multifunctional cytokine that regulates various aspects of the immune response, acute-phase reaction and haematopoiesis (for reviews see refs 1, 2). In vitro, leukaemia inhibitory factor, oncostatin M, ciliary neurotrophic factor and interleukin-11 display overlapping activities with IL-6. This functional redundancy may be explained by the interactions of specific binding receptors with a common signal-transducing receptor (gp130) (for reviews see refs 3, 4). To elucidate the unique function of IL-6 in vivo, we have disrupted the IL-6 gene by homologous recombination. IL-6-deficient mice develop normally. They fail to control efficiently vaccinia virus and infection with Listeria monocytogenes, a facultative intracellular bacterium. The T-cell-dependent antibody response against vesicular stomatitis virus is impaired. Further, the inflammatory acute-phase response after tissue damage or infection is severely compromised, whereas it is only moderately affected after challenge with lipopolysaccharide. We conclude that IL-6 production induced by injury or infection is an important in vivo SOS signal which coordinates activities of liver cells, macrophages and lymphocytes.

1,780 citations