scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.ECOENV.2021.112095

Polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments of Suzhou Industrial Park, an emerging eco-industrial park in China: Occurrence, sources and potential risk.

02 Mar 2021-Ecotoxicology and Environmental Safety (Academic Press)-Vol. 214, pp 112095-112095
Abstract: In this study, urban stream sediment samples were collected in the Suzhou Industrial Park (SIP), one of the earliest national demonstration eco-industrial parks of China. PAHs were analyzed in these sediments, and concentrations of total PAHs were 180–81,000 ng g−1 (5700 ± 14,000 ng g−1). Medium molecular weight (4- ring) PAHs were predominant (42 ± 12%), followed by high molecular weight (5- and 6- ring) PAHs (31 ± 10%). No correlation was found between concentrations of PAHs and land uses of SIP in this study. Diagnostic ratios and a positive matrix factorization (PMF) model indicated that coal/biomass combustion might be the primary PAH source (61%), followed by non-combustion sources (21%) and vehicular emission (18%). According to the spatial analysis, PAHs in the sediments of SIP might be mainly associated with the coal/biomass combustion in the northeast industrial zone. Residential & commercial activities seem not to be the major causes of PAH contamination. Total PAH toxic equivalent concentrations, effect range low/effect range median values, and mean effects range–median quotient all showed that PAHs were present at a low toxicity risk level in most regions of the SIP. However, vigilance is required at some sampling sites with extremely high PAH concentrations or high mean effects range–median quotient.

... read more

Citations
  More

6 results found


Journal ArticleDOI: 10.1016/J.JHAZMAT.2021.126534
Manish Kumar1, Nanthi Bolan2, Son A. Hoang3, Ankush D. Sawarkar4  +13 moreInstitutions (11)
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are generated due to incomplete burning of organic substances. Use of fossil fuels is the primary anthropogenic cause of PAHs emission in natural settings. Although several PAH compounds exist in the natural environmental setting, only 16 of these compounds are considered priority pollutants. PAHs imposes several health impacts on humans and other living organisms due to their carcinogenic, mutagenic, or teratogenic properties. The specific characteristics of PAHs, such as their high hydrophobicity and low water solubility, influence their active adsorption onto soils and sediments, affecting their bioavailability and subsequent degradation. Therefore, this review first discusses various sources of PAHs, including source identification techniques, bioavailability, and interactions of PAHs with soils and sediments. Then this review addresses the remediation technologies adopted so far of PAHs in soils and sediments using immobilization techniques (capping, stabilization, dredging, and excavation), mobilization techniques (thermal desorption, washing, electrokinetics, and surfactant assisted), and biological degradation techniques. The pros and cons of each technology are discussed. A detailed systematic compilation of eco-friendly approaches used to degrade PAHs, such as phytoremediation, microbial remediation, and emerging hybrid or integrated technologies are reviewed along with case studies and provided prospects for future research.

... read more

5 Citations


Open accessJournal ArticleDOI: 10.1016/J.JHAZMAT.2021.127849
Nan Zhao1, Feng Ju1, Quanwei Song2, Hui Pan1  +1 moreInstitutions (2)
Abstract: Soil clay minerals are effective substrate adsorbents of polycyclic aromatic hydrocarbons (PAHs) in natural soil. The adsorbed PAHs result in long-term contamination of soils. In this paper, a typical PAH phenanthrene (Phe) and nine high purity clay minerals are selected as representative PAH pollutants and adsorbents, respectively. A series of experiments have been conducted to disclose the relationship between the Phe adsorption effect of these clay minerals and their physical properties, including specific surface area (SSA), cation exchange capacity (CEC) and contact angle (CA). Molecular simulation methods are performed to explore the mechanism of clay mineral structure on Phe adsorption at the molecular level. Density functional theory (DFT) calculation suggests that the adsorption of Phe on clay minerals is mainly due to the van der Waals effect. The strength of the O-H-π effect is greater than that of the hydrophobic effect of Phe adsorption. Molecular dynamic (MD) simulations imply that the hydration effect of cations hinders the Phe hydrophobic adsorption by occupying the adsorption sites. Based on the mechanism explored, a simple empirical model is proposed, and the adsorption distribution coefficient Kd of clay mineral and water phases can be precisely predicted by the three physical properties of clay minerals, without rigorous quantitative analysis of soil clay minerals.

... read more

Topics: Clay minerals (58%), Cation-exchange capacity (55%), Adsorption (55%) ... read more

Open accessJournal ArticleDOI: 10.1016/J.APR.2021.101257
Xiawei Yu1, Hanyang Liu1, Fang Kang1, Bingqing Zhu1  +9 moreInstitutions (2)
Abstract: Air quality in the microenvironment of operating rooms (ORs) has attracted much attention as surgical smoke may pose health risks. We investigated air pollution in the operating room with a laminar flow system by examining the number and size distribution of airborne particles, the chemical composition and morphology of single particles, and polycyclic aromatic hydrocarbons (PAHs). In addition, environmentally persistent free radicals (EPFRs) in ORs are reported for the first time. The results showed that there were high levels of fine particles, EPFRs, and PAHs in laminar flow operating rooms during surgical procedures. PM2.5 is the dominant particle in ORs (accounting for >90%), consisting mainly of calcareous and metal-related particles based on the morphology and chemical analysis of single particles. In addition, anesthetic gas-related particles were found in the fine particles, and their toxicology requires more attention. EPFRs in the ORs were mainly carbon-centered radicals that may be reactive to cells. The concentrations of EPFRs and PAHs in ORs were higher than in the outside environment and present a potential health risk to surgeons and anesthetists. Hence, effective filtration and evacuation of surgical smoke are necessary.

... read more



Journal ArticleDOI: 10.1080/15226514.2021.1954876
Zahra Kiamarsi1, Mohammad Kafi1, Mohsen Soleimani2, Ahmad Nezami1  +1 moreInstitutions (3)
Abstract: Remediation of crude oil-impacted areas is a major pervasive concern in various environmental conditions. The major aim of this study was to investigate the collaboration of vetiver grass (Vetiveria zizanioides L.) and petroleum hydrocarbon-degrading bacteria to clean up contaminated soils. Vetiver grass and five native bacterial isolates were used in one consortium to remediate contaminated soil by crude oil at various concentrations (2.0, 4.0, 6.0 8.0, 10, and 12.0% woil/wsoil). The presence of isolated bacteria caused a significant (p < 0.05) increment of root-shoot ratio of vetiver in contaminated soils in comparison to non-contaminated soil. The combination of vetiver and bacterial consortium revealed efficient dissipation of more than 30% of low-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and more than 50% of high-molecular-weight PAHs in all crude oil concentrations. The removal of n-alkanes in the simultaneous presence of the bacteria and plant was more than 70.0% at 10.0% of oil concentration, whereas the removals in control were 20.7, 13.7 and 9.2%, respectively. The hydrocarbons dissipation efficiency of applied treatments decreased at 12.0% of contamination. It is concluded that a combination of vetiver grass and the isolated bacteria could be a feasible strategy for remediation of crude oil-polluted soils. Novelty statementDetermination of the responses of vetiver grass under different crude oil concentrations is one of the novelties of the present study, which is helpful for demonstrating plant tolerance on polluted environments. Also, it adds information about the potential of this grass to clean up crude oil-polluted soils solely as well as in the presence of promising selected bacterial strains.

... read more

Topics: Soil contamination (51%)

References
  More

55 results found


Journal ArticleDOI: 10.1007/BF02472006
Abstract: Matching biological and chemical data were compiled from numerous modeling, laboratory, and field studies performed in marine and estuarine sediments. Using these data, two guideline values (an effects range-low and an effects range-median) were determined for nine trace metals, total PCBs, two pesticides, 13 polynuclear aromatic hydrocarbons (PAHs), and three classes of PAHs. The two values defined concentration ranges that were: (1) rarely, (2) occasionally, or (3) frequently associated with adverse effects. The values generally agreed within a factor of 3 or less with those developed with the same methods applied to other data and to those developed with other effects-based methods. The incidence of adverse effects was quantified within each of the three concentration ranges as the number of cases in which effects were observed divided by the total number of observations. The incidence of effects increased markedly with increasing concentrations of all of the individual PAHs, the three classes of PAHs, and most of the trace metals. Relatively poor relationships were observed between the incidence of effects and the concentrations of mercury, nickel, total PCB, total DDT and p,p′-DDE. Based upon this evaluation, the approach provided reliable guidelines for use in sediment quality assessments. This method is being used as a basis for developing National sediment quality guidelines for Canada and informal, sediment quality guidelines for Florida.

... read more

3,546 Citations


Journal ArticleDOI: 10.1016/S0146-6380(02)00002-5
Abstract: Parent and alkyl PAHs (51 compounds and alkyl homologues) have been quantified in suspended particulates and sediments (345 samples) from the Fraser River system, British Columbia, Canada. The best potential to distinguish natural and anthropogenic sources is exhibited by ratios of the principal mass 178, 202, 228 and 276 parent PAHs, 1,7/2,6+1,7-DMP (dimethylphenanthrene), the phenanthrene/anthracene and fluoranthene/pyrene alkyl PAH series and several less commonly applied PAHs (e.g. acephenanthrylene and pentaphene). Using these ratios we infer sources of PAH to the Fraser basin and evaluate the consistency of these source assignments and the suitability of various commonly applied PAH ratios as indicators. PAH ratios and total concentration data reveal a basin lightly impacted by a variety of sources in its remote regions, especially near roads, but heavily impacted in urban areas, particularly near Vancouver. Contamination sources shift from biomass (e.g. wood and grass) burning to vehicle emissions between remote and urban locations. Stormwater and wastewater discharges appear to collect PAH from urban areas and release them as point sources. In contaminated areas ratios are specific for combustion vs. petroleum sources, and some ratios (202 and 276) distinguish biomass or coal from liquid fossil fuel combustion. At lower concentrations multiple sources at times make interpretations based on a single ratio misleading and the higher mass ratios (228 and 276) may be most applicable to urban areas. In all cases the examination of a variety of PAH indicator ratios that encompass a range of masses is necessary for a robust interpretation.

... read more

Topics: Fluoranthene (51%)

3,132 Citations


Open accessJournal ArticleDOI: 10.1016/J.EJPE.2015.03.011
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants generated primarily during the incomplete combustion of organic materials (e.g. coal, oil, petrol, and wood). Emissions from anthropogenic activities predominate; nevertheless, some PAHs in the environment originate from natural sources such as open burning, natural losses or seepage of petroleum or coal deposits, and volcanic activities. Major anthropogenic sources of PAHs include residential heating, coal gasification and liquefying plants, carbon black, coal-tar pitch and asphalt production, coke and aluminum production, catalytic cracking towers and related activities in petroleum refineries as well as and motor vehicle exhaust. PAHs are found in the ambient air in gas-phase and as sorbet to aerosols. Atmospheric partitioning of PAH compounds between the particulate and the gaseous phases strongly influences their fate and transport in the atmosphere and the way they enter into the human body. The removal of PAHs from the atmosphere by dry and wet deposition processes are strongly influenced by their gas/particle partitioning. Atmospheric deposition is a major source for PAHs in soil. Many PAHs have toxic, mutagenic and/or carcinogenic properties. PAHs are highly lipid soluble and thus readily absorbed from the gastrointestinal tract of mammals. They are rapidly distributed in a wide variety of tissues with a marked tendency for localization in body fat. Metabolism of PAHs occurs via the cytochrome P450-mediated mixed function oxidase system with oxidation or hydroxylation as the first step. Several different remediation technologies have been tested in efforts to remove these environmental contaminants. Among them, bioremediation is showing particular promise as a safe and cost-effective option. In spite of their xenobiotic properties, a variety of genera of gram-positive and -negative bacteria, fungi and algae have been isolated and characterized for their ability to utilize PAHs. The aim of this review is to discuss PAHs impact on the environmental and the magnitude of the human health risks posed by such substances. They also contain important information on concentrations, burdens and fate of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere. The main anthropogenic sources of PAHs and their effect on the concentrations of these compounds in air are discussed. The fate of PAHs in the air, their persistence and the main mechanisms of their losses are presented. Health hazards associated with PAH air pollution are stressed.

... read more

Topics: Pollutant (51%), Air pollution (50%)

1,486 Citations


Journal ArticleDOI: 10.1021/ES950252D
Roy M. Harrison1, D.J.T. Smith1, L. Luhana1Institutions (1)
Abstract: Intensive seasonal sampling campaigns were undertaken at an urban location in Birmingham, U.K., in which high-volume samplers were used to collect particulate- and vapor-phase polycyclic aromatic hydrocarbons (PAHs) by means of filter papers and polyurethane foam plugs. Eighteen PAH species were determined by reversed-phase HPLC. Additionally, the suspended particle loading of the air was measured gravimetrically. Dichotomous stacked filter units (DSFUs) were run simultaneously with the high-volumes enabling the collection of particulate matter representative of fine (<2.1 μm) and coarse sized (2.1−10 μm) fractions. Filters from the DSFUs were analyzed for 19 metal species [by proton induced X-ray emission (PIXE)], ammonium, elemental carbon, and various anions. Metal and PAH concentrations were observed to be broadly in line with concentrations measured at other urban areas throughout the U.K. Chemical source apportionment studies took the form of principal component analysis (PCA) followed by multi-line...

... read more

1,156 Citations


Journal ArticleDOI: 10.1007/BF00118995
01 Aug 1996-Ecotoxicology
Abstract: The weight-of-evidence approach to the development of sediment quality guidelines (SQGs) was modified to support the derivation of biological effects-based SQGs for Florida coastal waters. Numerical SQGs were derived for 34 substances, including nine trace metals, 13 individual polycyclic aromatic hydrocarbons (PAHs), three groups of PAHs, total polychlorinated biphenyls (PCBs), seven pesticides and one phthalate ester. For each substance, a threshold effects level (TEL) and a probable effects level (PEL) was calculated. These two values defined three ranges of chemical concentrations, including those that were (1) rarely, (2) occasionally or (3) frequently associated with adverse effects. The SQGs were then evaluated to determine their degree of agreement with other guidelines (an indicator of comparability) and the percent incidence of adverse effects within each concentration range (an indicator of reliability). The guidelines also were used to classify (using a dichotomous system: toxic, with one or more exceedances of the PELs or non-toxic, with no exceedances of the TELs) sediment samples collected from various locations in Florida and the Gulf of Mexico. The accuracy of these predictions was then evaluated using the results of the biological tests that were performed on the same sediment samples. The resultant SQGs were demonstrated to provide practical, reliable and predictive tools for assessing sediment quality in Florida and elsewhere in the southeastern portion of the United States.

... read more

970 Citations