scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polyimide-derived carbon nanofiber membranes as free-standing anodes for lithium-ion batteries

04 Aug 2022-RSC Advances-Vol. 12, Iss: 34, pp 21904-21915
TL;DR: In this article , a flexible carbon nanofiber membrane with a three-dimensional network structure was fabricated based on PMDA/ODA polyimide by combining electrospinning, imidization, and carbonization strategies.
Abstract: Free-standing and flexible carbon nanofiber membranes (CNMs) with a three-dimensional network structure were fabricated based on PMDA/ODA polyimide by combining electrospinning, imidization, and carbonization strategies. The influence of carbonization temperature on the physical-chemical characteristics of CNMs was investigated in detail. The electrochemical performances of CNMs as free-standing electrodes without any binder or conducting materials for lithium-ion batteries were also discussed. Furthermore, the surface state and internal carbon structure had an important effect on the nitrogen state, electrical conductivity, and wettability of CNMs, and then further affected the electrochemical performances. The CNMs/Li metal half-cells exhibited a satisfying charge–discharge cycle performance and excellent rate performance. They showed that the reversible specific capacity of CNMs carbonized at 700 °C could reach as high as 430 mA h g−1 at 50 mA g−1, and the value of the specific capacity remained at 206 mA h g−1 after 500 cycles at a high current density of 1 A g−1. Overall, the newly developed carbon nanofiber membranes will be a promising candidate for flexible electrodes used in high-power lithium-ion batteries, supercapacitors and sodium-ion batteries.
Citations
More filters
Journal ArticleDOI
28 Aug 2022-Polymers
TL;DR: In this article , a triple crosslinking strategy, including pre-rolling, solvent and chemical imidization cross-linking, was proposed to solve the problem of low electrical conductivity of carbon nanofiber membranes.
Abstract: In order to solve the problem of low electrical conductivity of carbon nanofiber membranes, a novel triple crosslinking strategy, including pre-rolling, solvent and chemical imidization crosslinking, was proposed to prepare carbon nanofiber membranes with a chemical crosslinking structure (CNMs-CC) derived from electrospinning polyimide nanofiber membranes. The physical-chemical characteristics of CNMs-CC as freestanding anodes for lithium-ion batteries were investigated in detail, along with carbon nanofiber membranes without a crosslinking structure (CNMs) and carbon nanofiber membranes with a physical crosslinking structure (CNMs-PC) as references. Further investigation demonstrates that CNMs-CC exhibits excellent rate performance and long cycle stability, compared with CNMs and CNMs-PC. At 50 mA g−1, CNMs-CC delivers a reversible specific capacity of 495 mAh g−1. In particular, the specific capacity of CNMs-CC is still as high as 290.87 mAh g−1 and maintains 201.38 mAh g−1 after 1000 cycles at a high current density of 1 A g−1. The excellent electrochemical performance of the CNMs-CC is attributed to the unique crosslinking structure derived from the novel triple crosslinking strategy, which imparts fast electron transfer and ion diffusion kinetics, as well as a stable structure that withstands repeated impacts of ions during charging and discharging process. Therefore, CNMs-CC shows great potential to be the freestanding electrodes applied in the field of flexible lithium-ion batteries and supercapacitors owing to the optimized structure strategy and improved properties.

2 citations

Journal ArticleDOI
TL;DR: In this article , a composite polyimide (PI) nanofiber membrane with a core-shell structure that anchors γ-Al2O3 nanoparticles was developed as an separator for high-safety lithium-ion batteries.
Abstract: Owing to its excellent thermal stability, polyimide (PI) is regarded as one of the most promising alternatives among separators for high-safety lithium-ion batteries (LIBs). Unfortunately, the wettability of the PI separator to electrolytes is still undesirable. The complexation–hydrolyzation method was used to develop a composite membrane with a core–shell structure that anchors γ-Al2O3 nanoparticles on PI nanofiber (PI@γ-Al2O3) as an LIB separator. The effects of surface treatment on the physicochemical and electrochemical properties of PI composite membranes are studied in detail, using the pristine PI nanofiber membrane as a reference. The results show that the PI@γ-Al2O3 nanofiber membrane exhibits better physicochemical properties and electrochemical performances. Specifically, the wettability property of the PI@γ-Al2O3 nanofiber membrane is improved with an almost zero contact angle, which significantly meets the requirements of high-performance LIBs. Furthermore, the electrochemical performance of the PI@γ-Al2O3 nanofiber membrane also shows excellent comprehensive properties with the ionic conductivity improving from 0.81 to 1.74 mS cm–1. Besides, the PI@γ-Al2O3 nanofiber membrane maintains a long charge–discharge process with a capacity retention rate of 98% at 0.5 C after 100 cycles. Consequently, the aforementioned excellent performances illustrate that core–shell PI@γ-Al2O3 nanofiber membranes have a promising future for the safety and stability of LIBs.

1 citations

Journal ArticleDOI
TL;DR: In this article , Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber (N-PCNF) electrodes were successfully synthesized via combining centrifugal spinning, chemical polymerization of pyrrole and a two-step heat treatment.
Abstract: Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber electrodes were successfully synthesized via combining centrifugal spinning, chemical polymerization of pyrrole and a two-step heat treatment. Nanoparticle-on-nanofiber morphology with highly porous carbon nanotube like channels were observed from SEM and TEM images. Nitrogen doped carbon nanoparticles on highly porous carbon nanofiber (N-PCNF) electrodes exhibited excellent cycling and C-rate performance with a high reversible capacity of around 280 mA h g−1 in sodium ion batteries. Moreover, at 1000 mA g−1, a high reversible capacity of 172 mA h g−1 was observed after 300 cycles. The superior electrochemical properties were attributed to a highly porous structure with enlarged d-spacings, enriched defects and active sites due to nitrogen doping. The electrochemical results prove that N-PCNF electrodes are promising electrode materials for high performance sodium ion batteries.

1 citations

Journal ArticleDOI
TL;DR: In this article , a green and low-carbon method to synthesize porous carbon by reacting CO2 with LiAlH4 at low temperatures was developed, where the starting reaction temperatures were as low as 142, 121, and 104 °C for LiH4 reacting with 1, 30, and 60 bar CO2, respectively.
Abstract: Advanced carbon materials have played an important function in the field of energy conversion and storage. The green and low-carbon synthesis of elemental carbon with controllable morphology and microstructure is the main problem for carbon materials. Herein, we develop a green and low-carbon method to synthesize porous carbon by reacting CO2 with LiAlH4 at low temperatures. The starting reaction temperatures are as low as 142, 121, and 104 °C for LiAlH4 reacting with 1, 30, and 60 bar CO2, respectively. For the elemental carbon, the porosity of elemental carbon gradually decreased, whereas its graphitization degree increased as the CO2 pressure increased from 1 bar to 60 bar. CO2 serves as one of the two reactants and the CO2 pressure can adjust the thermodynamic and kinetic properties of the formation reaction for synthesizing elemental carbon. The mechanism for CO2 pressure-dependent microstructure and morphology of carbon is discussed on the basis of the formation reaction of elemental carbon and gas blowing effect of H2 and CO2. The elemental carbon with different morphology and microstructure exhibits distinct electrochemical lithium storage performance including reversible capacity, rate capability, cycling stability, and Coulombic efficiency, owing to their different lithium storage mechanism. The elemental carbon synthesized at 30 bar CO2 delivers the highest reversible capacity of 506 mAh g−1 after 1000 cycles even at 1.0 A g−1. Advanced energy storage technology based on the green and low-carbon synthesis of carbon materials is a requisite for providing a stable and sustainable energy supply to meet the ever-growing demand for energy.
References
More filters
Journal ArticleDOI
15 Nov 2001-Nature
TL;DR: A brief historical review of the development of lithium-based rechargeable batteries is presented, ongoing research strategies are highlighted, and the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems are discussed.
Abstract: Technological improvements in rechargeable solid-state batteries are being driven by an ever-increasing demand for portable electronic devices. Lithium-ion batteries are the systems of choice, offering high energy density, flexible and lightweight design, and longer lifespan than comparable battery technologies. We present a brief historical review of the development of lithium-based rechargeable batteries, highlight ongoing research strategies, and discuss the challenges that remain regarding the synthesis, characterization, electrochemical performance and safety of these systems.

17,496 citations

Journal ArticleDOI
06 Feb 2008-Nature
TL;DR: Researchers must find a sustainable way of providing the power their modern lifestyles demand to ensure the continued existence of clean energy sources.
Abstract: Researchers must find a sustainable way of providing the power our modern lifestyles demand.

15,980 citations

Journal ArticleDOI
28 Sep 2000-Nature
TL;DR: It is reported that electrodes made of nanoparticles of transition-metal oxides (MO), where M is Co, Ni, Cu or Fe, demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates.
Abstract: Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Although promising electrode systems have recently been proposed, their lifespans are limited by Li-alloying agglomeration or the growth of passivation layers, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g(-1), with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1-5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

7,404 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed and explained the reasons for the instability of a viscous jet of polymer solution at a pendent droplet, showing that the longitudinal stress caused by the external electric field acting on the charge carried by the jet stabilized the straight jet for some distance.
Abstract: Nanofibers of polymers were electrospun by creating an electrically charged jet of polymer solution at a pendent droplet. After the jet flowed away from the droplet in a nearly straight line, it bent into a complex path and other changes in shape occurred, during which electrical forces stretched and thinned it by very large ratios. After the solvent evaporated, birefringent nanofibers were left. In this article the reasons for the instability are analyzed and explained using a mathematical model. The rheological complexity of the polymer solution is included, which allows consideration of viscoelastic jets. It is shown that the longitudinal stress caused by the external electric field acting on the charge carried by the jet stabilized the straight jet for some distance. Then a lateral perturbation grew in response to the repulsive forces between adjacent elements of charge carried by the jet. The motion of segments of the jet grew rapidly into an electrically driven bending instability. The three-dimensional paths of continuous jets were calculated, both in the nearly straight region where the instability grew slowly and in the region where the bending dominated the path of the jet. The mathematical model provides a reasonable representation of the experimental data, particularly of the jet paths determined from high speed videographic observations.

2,324 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe some recent developments in nanostructured anode and cathode materials for lithium-ion batteries, addressing the benefits of nanometer-size effects, the disadvantages of 'nano', and strategies to solve these issues such as nano/micro hierarchical structures and surface coatings, as well as developments in the discovery of nano-structured Pt-based electrocatalysts for direct methanol fuel cells (DMFCs).
Abstract: One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are amongst the most promising candidates in terms of energy densities and power densities. Nanostructured materials are currently of interest for such devices because of their high surface area, novel size effects, significantly enhanced kinetics, and so on. This Progress Report describes some recent developments in nanostructured anode and cathode materials for lithium-ion batteries, addressing the benefits of nanometer-size effects, the disadvantages of 'nano', and strategies to solve these issues such as nano/micro hierarchical structures and surface coatings, as well as developments in the discovery of nanostructured Pt-based electrocatalysts for direct methanol fuel cells (DMFCs). Approaches to lowering the cost of Pt catalysts include the use of i) novel nanostructures of Pt, ii) new cost-effective synthesis routes, iii) binary or multiple catalysts, and iv) new catalyst supports.

2,017 citations