scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polymer blends and composites from renewable resources

01 Jun 2006-Progress in Polymer Science (Pergamon)-Vol. 31, Iss: 6, pp 576-602
TL;DR: A review of polymer blends and composites from renewable resources can be found in this article, where the progress of blends from three kinds of polymers from renewable sources (i.e., natural polymers such as starch, protein and cellulose), synthetic polymers, such as polylactic acid and polyhydroxybutyrate, are described with an emphasis on potential applications.
About: This article is published in Progress in Polymer Science.The article was published on 2006-06-01. It has received 1931 citations till now. The article focuses on the topics: Biodegradable polymer & Polymer.
Citations
More filters
Journal ArticleDOI
TL;DR: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy.
Abstract: Biomass is an important feedstock for the renewable production of fuels, chemicals, and energy. As of 2005, over 3% of the total energy consumption in the United States was supplied by biomass, and it recently surpassed hydroelectric energy as the largest domestic source of renewable energy. Similarly, the European Union received 66.1% of its renewable energy from biomass, which thus surpassed the total combined contribution from hydropower, wind power, geothermal energy, and solar power. In addition to energy, the production of chemicals from biomass is also essential; indeed, the only renewable source of liquid transportation fuels is currently obtained from biomass.

3,644 citations

Journal ArticleDOI
TL;DR: In this paper, structural, thermal, crystallization, and rheological properties of PLA are reviewed in relation to its converting processes, including extrusion, injection molding, injection stretch blow molding and casting.

2,293 citations

Journal ArticleDOI
TL;DR: The main purpose of this review is to elaborate the mechanical and physical properties that affect PLA stability, processability, degradation, PLA-other polymers immiscibility, aging and recyclability, and therefore its potential suitability to fulfill specific application requirements.

1,557 citations

Journal ArticleDOI
TL;DR: This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations.
Abstract: In pursuit of more sustainable and competitive biorefineries, the effective valorisation of lignin is key. An alluring opportunity is the exploitation of lignin as a resource for chemicals. Three technological biorefinery aspects will determine the realisation of a successful lignin-to-chemicals valorisation chain, namely (i) lignocellulose fractionation, (ii) lignin depolymerisation, and (iii) upgrading towards targeted chemicals. This review provides a summary and perspective of the extensive research that has been devoted to each of these three interconnected biorefinery aspects, ranging from industrially well-established techniques to the latest cutting edge innovations. To navigate the reader through the overwhelming collection of literature on each topic, distinct strategies/topics were delineated and summarised in comprehensive overview figures. Upon closer inspection, conceptual principles arise that rationalise the success of certain methodologies, and more importantly, can guide future research to further expand the portfolio of promising technologies. When targeting chemicals, a key objective during the fractionation and depolymerisation stage is to minimise lignin condensation (i.e. formation of resistive carbon–carbon linkages). During fractionation, this can be achieved by either (i) preserving the (native) lignin structure or (ii) by tolerating depolymerisation of the lignin polymer but preventing condensation through chemical quenching or physical removal of reactive intermediates. The latter strategy is also commonly applied in the lignin depolymerisation stage, while an alternative approach is to augment the relative rate of depolymerisation vs. condensation by enhancing the reactivity of the lignin structure towards depolymerisation. Finally, because depolymerised lignins often consist of a complex mixture of various compounds, upgrading of the raw product mixture through convergent transformations embodies a promising approach to decrease the complexity. This particular upgrading approach is termed funneling, and includes both chemocatalytic and biological strategies.

1,466 citations

Journal ArticleDOI
TL;DR: Lignin is a highly abundant biopolymeric material that constitutes with cellulose one of the major components in structural cell walls of higher vascular plants and is used as a precursor for the elaboration of original macromolecular architecture and the development of new building blocks as mentioned in this paper.

1,416 citations

References
More filters
Journal ArticleDOI
TL;DR: A review of the academic and industrial aspects of the preparation, characterization, materials properties, crystallization behavior, melt rheology, and processing of polymer/layered silicate nanocomposites is given in this article.

6,343 citations


"Polymer blends and composites from ..." refers background in this paper

  • ...tensile and flexural properties, and decreased permeability and flammability [132,133]....

    [...]

  • ...[133] Ray SS, Okamoto M....

    [...]

Book
11 Oct 1996
TL;DR: A. Ratner, Biomaterials Science: An Interdisciplinary Endeavor, Materials Science and Engineering--Properties of Materials: J.E. Schoen, and R.J.Ratner, Surface Properties of Materials, and Application of Materials in Medicine and Dentistry.
Abstract: B.D. Ratner, Biomaterials Science: An Interdisciplinary Endeavor. Materials Science and Engineering--Properties of Materials: J.E. Lemons, Introduction. F.W. Cooke, Bulk Properties of Materials. B.D. Ratner, Surface Properties of Materials. Classes of Materials Used in Medicine: A.S. Hoffman, Introduction. J.B. Brunski, Metals. S.A. Visser, R.W. Hergenrother, and S.L. Cooper, Polymers. N.A. Peppas, Hydrogels. J. Kohnand R. Langer, Bioresorbable and Bioerodible Materials. L.L. Hench, Ceramics, Glasses, and Glass Ceramics. I.V. Yannas, Natural Materials. H. Alexander, Composites. B.D. Ratner and A.S. Hoffman, Thin Films, Grafts, and Coatings. S.W. Shalaby, Fabrics. A.S. Hoffman, Biologically Functional Materials. Biology, Biochemistry, and Medicine--Some Background Concepts: B.D. Ratner, Introduction. T.A. Horbett, Proteins: Structure, Properties, and Adsorption to Surfaces. J.M. Schakenraad, Cells: Their Surfaces and Interactions with Materials. F.J. Schoen, Tissues. Host Reactions to Biomaterials and Their Evaluations: F.J. Schoen, Introduction. J.M. Anderson, Inflammation, Wound Healing, and the Foreign Body Response. R.J. Johnson, Immunology and the Complement System. K. Merritt, Systemic Toxicity and Hypersensitivity. S.R. Hanson and L.A. Harker, Blood Coagulation and Blood-Materials Interaction. F.J.Schoen, Tumorigenesis and Biomaterials. A.G. Gristina and P.T. Naylor, Implant-Associated Infection. Testing Biomaterials: B.D. Ratner, Introduction. S.J. Northup, In Vitro Assessment of Tissue Compatibility. M. Spector and P.A. Lalor, In Vivo Assessment of Tissue Compatibility. S. Hanson and B.D. Ratner, Testing of Blood-Material Interactions. B.H. Vale, J.E. Willson, and S.M. Niemi, Animal Models. Degradation of Materials in the Biological Environment: B.D. Ratner, Introduction. A.J. Coury, Chemical and Biochemical Degradation of Polymers. D.F. Williams and R.L. Williams, Degradative Effects of the Biological Environment on Metals and Ceramics. C.R. McMillin, Mechanical Breakdown in the Biological Environment. Y. Pathak, F.J. Schoen, and R.J. Levy, Pathologic Calcification of Biomaterials. Application of Materials in Medicine and Dentistry: J.E. Lemons, Introduction. D. Didisheim and J.T. Watson, Cardiovascular Applications. S.W. Kim, Nonthrombogenic Treatments and Strategies. J.E. Lemons, Dental Implants. D.C. Smith, Adhesives and Sealants. M.F. Refojo, Ophthalmologic Applications. J.L. Katz, Orthopedic Applications. J. Heller, Drug Delivery Systems. D. Goupil, Sutures. J.B. Kane, R.G. Tompkins, M.L. Yarmush, and J.F. Burke, Burn Dressings. L.S. Robblee and J.D. Sweeney, Bioelectrodes. P. Yager, Biomedical Sensors and Biosensors. Artificial Organs: F.J. Schoen, Introduction. K.D. Murray and D.B. Olsen, Implantable Pneumatic Artificial Hearts. P. Malchesky, Extracorporeal Artificial Organs. Practical Aspects of Biomaterials--Implants and Devices: F.J. Schoen, Introduction. J.B. Kowalski and R.F. Morrissey, Sterilization of Implants. L.M. Graham, D. Whittlesey, and B. Bevacqua, Cardiovascular Implantation. A.N. Cranin, M. Klein, and A. Sirakian, Dental Implantation. S.A. Obstbaum, Ophthalmic Implantation. A.E. Hoffman, Implant and Device Failure. B.D. Ratner, Correlations of Material Surface Properties with Biological Responses. J.M. Anderson, Implant Retrieval and Evaluation. New Products and Standards: J.E. Lemons, Introduction. S.A. Brown, Voluntary Consensus Standards. N.B. Mateo, Product Development and Regulation. B. Ratner, Perspectives and Possibilities in Biomaterials Science. Appendix: S. Slack, Properties of Biological Fluids. Subject Index.

4,194 citations


"Polymer blends and composites from ..." refers background in this paper

  • ...[19] Kohn J, Langer R, Ratner BD, Hoffman AS, Schoen FJ,...

    [...]

  • ...Biopolymers are an important source of material with a high chemical versatility and with high potential to be used in a range of biomedical applications [18,19]....

    [...]

Journal ArticleDOI
TL;DR: In this article, a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites is presented, and the influence of such treatments by taking into account fibre content on the creep, quasi-static, cyclic dynamic and impact behaviour of natural fibre reinforced plastics are discussed in detail.

4,160 citations


"Polymer blends and composites from ..." refers background in this paper

  • ...Cellulose is the major substance obtained from vegetable fibers, and applications for cellulose fiber-reinforced polymers have again come to the forefront with the focus on renewable raw materials [7–9]....

    [...]

  • ...Bledzki and Gassan [7] reviewed a number of composites reinforced by cellulose-based fibers....

    [...]

  • ...[7] Bledzki AK, Gassan J....

    [...]

Journal ArticleDOI
TL;DR: The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material.
Abstract: Polylactide polymers have gained enormous attention as a replacement for conventional synthetic packaging materials in the last decade. By being truly biodegradable, derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the "green tax" in Germany or meeting environmental regulations in Japan, polylactides (PLAs) are a growing alternative as a packaging material for demanding markets. The aim of this paper is to review the production techniques for PLAs, summarize the main properties of PLA and to delineate the main advantages and disadvantages of PLA as a polymeric packaging material. PLA films have better ultraviolet light barrier properties than low density polyethylene (LDPE), but they are slightly worse than those of cellophane, polystyrene (PS) and poly(ethylene terephthalate) (PET). PLA films have mechanical properties comparable to those of PET and better than those of PS. PLA also has lower melting and glass transition temperatures than PET and PS. The glass transition temperature of PLA changes with time. Humidity between 10 and 95% and storage temperatures of 5 to 40 degrees C do not have an effect on the transition temperature of PLA, which can be explained by its low water sorption values (i.e. <100 ppm at Aw = 1). PLA seals well at temperatures below the melting temperature but an appreciable shrinking of the films has been noted when the material is sealed near its melting temperature. Solubility parameter predictions indicate that PLA will interact with nitrogen compounds, anhydrides and some alcohols and that it will not interact with aromatic hydrocarbons, ketones, esters, sulfur compounds or water. The CO2, O2 and water permeability coefficients of PLA are lower than those of PS and higher than those of PET. Its barrier to ethyl acetate and D-limonene is comparable to PET. The amount of lactic acid and its derivatives that migrate to food simulant solutions from PLA is much lower than any of the current average dietary lactic acid intake values allowed by several governmental agencies. Thus, PLA is safe for use in fabricating articles for contact with food.

2,803 citations


"Polymer blends and composites from ..." refers background in this paper

  • ...By being truly biodegradable, being derived from renewable resources and by providing consumers with extra end-use benefits such as avoiding paying the ‘green tax’ in Germany or meeting environmental regulations in Japan, PLAs are a growing alternative for packaging material in numerous demanding markets [74]....

    [...]

  • ...[74] Auras R, Harte B, Selke S....

    [...]

Journal ArticleDOI
TL;DR: The structural aspects and properties of several biofibers and biodegradable polymers, recent developments of different biofiber and biocomposites are discussed in this paper.
Abstract: Recently the critical discussion about the preservation of natural resources and recycling has led to the renewed interest concerning biomaterials with the focus on renewable raw materials. Because of increasing environmental consciousness and demands of legislative authorities, use and removal of traditional composite structures, usually made of glass, carbon or aramid fibers being reinforced with epoxy, unsaturated polyester, or phenolics, are considered critically. Recent advances in natural fiber development, genetic engineering and composite science offer significant opportunities for improved materials from renewable resources with enhanced support for global sustainability. The important feature of composite materials is that they can be designed and tailored to meet different requirements. Since natural fibers are cheap and biodegradable, the biodegradable composites from biofibers and biodegradable polymers will render a contribution in the 21st century due to serious environmental problem. Biodegradable polymers have offered scientists a possible solution to waste-disposal problems associated with traditional petroleum-derived plastics. For scientists the real challenge lies in finding applications which would consume sufficiently large quantities of these materials to lead price reduction, allowing biodegradable polymers to compete economically in the market. Today's much better performance of traditional plastics are the outcome of continued RD however the existing biodegradable polymers came to public only few years back. Prices of biodegradable polymers can be reduced on mass scale production; and such mass scale production will be feasible through constant R&D efforts of scientists to improve the performance of biodegradable plastics. Manufacture of biodegradable composites from such biodegradable plastics will enhance the demand of such materials. The structural aspects and properties of several biofibers and biodegradable polymers, recent developments of different biodegradable polymers and biocomposites are discussed in this review article. Collaborative R&D efforts among material scientists and engineers as well as intensive co-operation and co-ordination among industries, research institutions and government are essential to find various commercial applications of biocomposites even beyond to our imagination.

2,612 citations


"Polymer blends and composites from ..." refers background in this paper

  • ...[21] Mohanty AK, Misra M, Hinrichsen G....

    [...]

  • ...A great variety of materials derived from natural sources have been studied and proposed for different biomedical uses, namely polysaccharides (starch, alginate, chitin/chitosan) or protein (soy, collagen, fibrin gel) and, as reinforcement, a variety of biofibers such as lignocellulosic natural fibers [20,21]....

    [...]