scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polymer photovoltaic cells : enhanced efficiencies via a network of internal donor-acceptor heterojunctions

15 Dec 1995-Science (American Association for the Advancement of Science)-Vol. 270, Iss: 5243, pp 1789-1791
TL;DR: In this paper, the carrier collection efficiency and energy conversion efficiency of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives.
Abstract: The carrier collection efficiency (ηc) and energy conversion efficiency (ηe) of polymer photovoltaic cells were improved by blending of the semiconducting polymer with C60 or its functionalized derivatives. Composite films of poly(2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) and fullerenes exhibit ηc of about 29 percent of electrons per photon and ηe of about 2.9 percent, efficiencies that are better by more than two orders of magnitude than those that have been achieved with devices made with pure MEH-PPV. The efficient charge separation results from photoinduced electron transfer from the MEH-PPV (as donor) to C60 (as acceptor); the high collection efficiency results from a bicontinuous network of internal donor-acceptor heterojunctions.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
02 Nov 2012-Science
TL;DR: A low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight is reported.
Abstract: The energy costs associated with separating tightly bound excitons (photoinduced electron-hole pairs) and extracting free charges from highly disordered low-mobility networks represent fundamental losses for many low-cost photovoltaic technologies. We report a low-cost, solution-processable solar cell, based on a highly crystalline perovskite absorber with intense visible to near-infrared absorptivity, that has a power conversion efficiency of 10.9% in a single-junction device under simulated full sunlight. This "meso-superstructured solar cell" exhibits exceptionally few fundamental energy losses; it can generate open-circuit photovoltages of more than 1.1 volts, despite the relatively narrow absorber band gap of 1.55 electron volts. The functionality arises from the use of mesoporous alumina as an inert scaffold that structures the absorber and forces electrons to reside in and be transported through the perovskite.

9,158 citations

Journal ArticleDOI
18 Oct 2013-Science
TL;DR: In this article, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

8,199 citations

Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: It is shown that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.
Abstract: Many different photovoltaic technologies are being developed for large-scale solar energy conversion. The wafer-based first-generation photovoltaic devices have been followed by thin-film solid semiconductor absorber layers sandwiched between two charge-selective contacts and nanostructured (or mesostructured) solar cells that rely on a distributed heterojunction to generate charge and to transport positive and negative charges in spatially separated phases. Although many materials have been used in nanostructured devices, the goal of attaining high-efficiency thin-film solar cells in such a way has yet to be achieved. Organometal halide perovskites have recently emerged as a promising material for high-efficiency nanostructured devices. Here we show that nanostructuring is not necessary to achieve high efficiencies with this material: a simple planar heterojunction solar cell incorporating vapour-deposited perovskite as the absorbing layer can have solar-to-electrical power conversion efficiencies of over 15 per cent (as measured under simulated full sunlight). This demonstrates that perovskite absorbers can function at the highest efficiencies in simplified device architectures, without the need for complex nanostructures.

7,018 citations

Journal Article
TL;DR: In this paper, transient absorption and photoluminescence-quenching measurements were performed to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide and triiodide perovskite absorbers.
Abstract: Organic-inorganic perovskites have shown promise as high-performance absorbers in solar cells, first as a coating on a mesoporous metal oxide scaffold and more recently as a solid layer in planar heterojunction architectures. Here, we report transient absorption and photoluminescence-quenching measurements to determine the electron-hole diffusion lengths, diffusion constants, and lifetimes in mixed halide (CH3NH3PbI(3-x)Cl(x)) and triiodide (CH3NH3PbI3) perovskite absorbers. We found that the diffusion lengths are greater than 1 micrometer in the mixed halide perovskite, which is an order of magnitude greater than the absorption depth. In contrast, the triiodide absorber has electron-hole diffusion lengths of ~100 nanometers. These results justify the high efficiency of planar heterojunction perovskite solar cells and identify a critical parameter to optimize for future perovskite absorber development.

6,454 citations

Journal ArticleDOI
14 Jan 1999-Nature
TL;DR: Research in the use of organic polymers as active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications.
Abstract: Research in the use of organic polymers as the active semiconductors in light-emitting diodes has advanced rapidly, and prototype devices now meet realistic specifications for applications. These achievements have provided insight into many aspects of the background science, from design and synthesis of materials, through materials fabrication issues, to the semiconductor physics of these polymers.

5,653 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a two-layer organic photovoltaic cell was fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative, achieving a power conversion efficiency of about 1% under simulated AM2 illumination.
Abstract: A thin‐film, two‐layer organic photovoltaiccell has been fabricated from copper phthalocyanine and a perylene tetracarboxylic derivative. A power conversion efficiency of about 1% has been achieved under simulated AM2 illumination. A novel feature of the device is that the charge‐generation efficiency is relatively independent of the bias voltage, resulting in cells with fill factor values as high as 0.65. The interface between the two organic materials, rather than the electrode/organic contacts, is crucial in determining the photovoltaicproperties of the cell.

4,717 citations

Journal ArticleDOI
27 Nov 1992-Science
TL;DR: Because the photoluminescence in the conducting polymer is quenched by interaction with C60, the data imply that charge transfer from the excited state occurs on a picosecond time scale.
Abstract: Evidence for photoinduced electron transfer from the excited state of a conducting polymer onto buckminsterfullerene, C(60), is reported. After photo-excitation of the conjugated polymer with light of energy greater than the pi-pi* gap, an electron transfer to the C(60) molecule is initiated. Photoinduced optical absorption studies demonstrate a different excitation spectrum for the composite as compared to the separate components, consistent with photo-excited charge transfer. A photoinduced electron spin resonance signal exhibits signatures of both the conducting polymer cation and the C(60) anion. Because the photoluminescence in the conducting polymer is quenched by interaction with C(60), the data imply that charge transfer from the excited state occurs on a picosecond time scale. The charge-separated state in composite films is metastable at low temperatures.

4,016 citations

Journal ArticleDOI
10 Aug 1995-Nature
TL;DR: In this paper, the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers is shown to provide both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes.
Abstract: THE photovoltaic effect involves the production of electrons and holes in a semiconductor device under illumination, and their subsequent collection at opposite electrodes. In many inorganic semiconductors, photon absorption produces free electrons and holes directly1. But in molecular semiconductors, absorption creates electrona¤-hole pairs (excitons) which are bound at room temperature2, so that charge collection requires their dissociation. Exciton dissociation is known to be efficient at interfaces between materials with different electron affinities and ionization potentials, where the electron is accepted by the material with larger electron affinity and the hole by the material with lower ionization potential3. A two-layer diode structure can thus be used, in which excitons generated in either layer diffuse towards the interface between the layers. However, the exciton diffusion range is typically at least a factor of 10 smaller than the optical absorption depth, thus limiting the efficiency of charge collection3. Here we show that the interpenetrating network formed from a phase-segregated mixture of two semiconducting polymers provides both the spatially distributed interfaces necessary for efficient charge photo-generation, and the means for separately collecting the electrons and holes. Devices using thin films of these polymer mixtures show promise for large-area photodetectors.

3,165 citations

Journal ArticleDOI
TL;DR: In this article, it was shown that the characteristics of light-emitting diodes based upon MEH-PPV are determined by tunneling both the holes and the electrons through interface barriers caused by the band offset between the polymer and the electrodes.
Abstract: In this paper it is demonstrated that the characteristics of light‐emitting diodes based upon MEH‐PPV [more fully known as poly(2‐methoxy,5‐(2’‐ethyl‐hexoxy)‐1,4‐phenylene‐ vinylene)] are determined by tunneling of both the holes and the electrons through interface barriers caused by the band offset between the polymer and the electrodes. It is shown that manipulating these offsets can control the useful operating voltage of the device as well as its efficiency. A model is developed that clearly explains the device characteristics of a wide range of diodes based upon MEH‐PPV. The turn‐on voltage for an ideal device is shown to be equal to the band gap, i.e., 2.1 eV for MEH‐PPV, and is slightly lower at 1.8 eV for an indium‐tin oxide/MEH‐PPV/Ca device. If there is a significant difference in the barrier height, the smaller of the two barriers controls the I–V characteristics, while the larger barrier determines the device efficiency. In indium‐tin‐oxide/MEH‐PPV/Ca devices, the barrier to hole injection is ...

1,435 citations

Journal ArticleDOI
TL;DR: In this paper, the synthesis and complete characterization of soluble derivatives of C-60 for applications to physics and biology was described, where the goal of the strategy was to have a "modular" approach in order to be able to easily vary a functional group attached indirectly to the cluster.
Abstract: We describe the synthesis and complete characterization of soluble derivatives of C-60 for applications to physics and biology. The goal of the strategy was to have a ''modular'' approach in order to be able to easily vary a functional group attached indirectly to the cluster. The functionality could be hydrophilic (e.g., histamide) or hydrophobic (e.g., cholestanoxy). The former was prepared for biological studies and the latter for photophysical studies toward improvement of photoinduced electron transfer efficiencies in the fabrication of photodetectors and photodiodes. An important intermediate, a carboxylic acid, was found to be recalcitrant to characterization by the usual mass spectroscopic and elemental analysis techniques. This problem was solved by the use of MALDIMS. The carboxylic acid was easily converted to the key intermediate acid chloride, which in turn was convertible to a large variety of derivatives. Both isomeric forms ([5,6], fulleroid and [6,6], methanofullerene) of the C-61 clusters were prepared. The fulleroid formation could have given rise to a 50:50 mixture of phenyl-over-former pentagon phenyl-over-former hexagon isomers but, remarkably, afforded a 95:5 mixture of these isomers, respectively. The fulleroid and methano-fullerene gave different cyclic voltammograms, with the former being reduced at 34 mV more positive potential than the latter.

1,186 citations