scispace - formally typeset
Search or ask a question
Book ChapterDOI

Polymer Synthesis and Processing

TL;DR: This chapter addresses different polymerization methods and techniques employed for the preparation of biopolymers, with the emphasis is on the general properties of bi monopolymers, synthetic protocols, and their biomedical applications.
Abstract: Polymer scientists have made an extensive research in the development of biodegradable polymers, which could find enormous applications in the area of medical science. Today, various biopolymers have been prepared and utilized in different biomedical applications. Despite the apparent proliferation of biopolymers in medical science, the science and technology of biopolymers is still in its early stages of development. Tremendous opportunities exist and will continue to exist for the penetration of biopolymers in every facet of medical science through intensive research and development. Therefore, this chapter addresses different polymerization methods and techniques employed for the preparation of biopolymers. The emphasis is on the general properties of biopolymers, synthetic protocols, and their biomedical applications. In order to make the useful biomedical devices from the polymers to meet the demands of medical science, various processing techniques employed for the development of devices have been discussed. Further, perspectives in this field have been highlighted and conclusions arrived at. The relevant literature was collected from different sources, including Google sites, books, and reviews.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a review summarizes a vast diversity of applicative examples showing the tremendous opportunities for future research and developments of polyvinylpyrrolidone-based biomaterials.
Abstract: The high versatility of poly(vinylpyrrolidone) (PVP) can be explained by its diverse properties including its solubility in water and in a broad range of liquid media, high chemical and thermal resistance, and unique wetting, binding, and film-forming properties. Thanks to biocompatibility, absence of toxicity and high capacity to form interpolymer complexes, PVP is widely used for designing materials for different applications, such as biomaterials for medical and nonmedical uses. This review summarizes a vast diversity of applicative examples showing the tremendous opportunities for future research and developments of PVP based biomaterials.

296 citations

Journal Article
TL;DR: Degradable biomaterials have been investigated for biomedical applications with novel materials constantly being developed to meet new challenges as mentioned in this paper, and a review summarizes the most recent advances in the field over the past four years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.
Abstract: Utilization of polymers as biomaterials has greatly impacted the advancement of modern medicine. Specifically, polymeric biomaterials that are biodegradable provide the significant advantage of being able to be broken down and removed after they have served their function. Applications are wide ranging with degradable polymers being used clinically as surgical sutures and implants. To fit functional demand, materials with desired physical, chemical, biological, biomechanical, and degradation properties must be selected. Fortunately, a wide range of natural and synthetic degradable polymers has been investigated for biomedical applications with novel materials constantly being developed to meet new challenges. This review summarizes the most recent advances in the field over the past 4 years, specifically highlighting new and interesting discoveries in tissue engineering and drug delivery applications.

275 citations

Journal ArticleDOI
TL;DR: An overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes is presented and novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment are discussed.
Abstract: Due to its unique properties, collagen is used in the growing fields of pharmaceutical and biomedical devices, as well as in the fields of nutraceuticals, cosmeceuticals, food and beverages. Collagen also represents a valid resource for bioplastics and biomaterials, to be used in the emerging health sectors. Recently, marine organisms have been considered as promising sources of collagen, because they do not harbor transmissible disease. In particular, fish biomass as well as by-catch organisms, such as undersized fish, jellyfish, sharks, starfish, and sponges, possess a very high collagen content. The use of discarded and underused biomass could contribute to the development of a sustainable process for collagen extraction, with a significantly reduced environmental impact. This addresses the European zero-waste strategy, which supports all three generally accepted goals of sustainability: sustainable economic well-being, environmental protection, and social well-being. A zero-waste strategy would use far fewer new raw materials and send no waste materials to landfills. In this review, we present an overview of the studies carried out on collagen obtained from by-catch organisms and fish wastes. Additionally, we discuss novel technologies based on thermoplastic processes that could be applied, likewise, as marine collagen treatment.

124 citations


Cites background from "Polymer Synthesis and Processing"

  • ...These values vary, especially the minor constituents, depending on the source of the raw material and processing technique [57]....

    [...]

Journal ArticleDOI
TL;DR: A review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications is provided.
Abstract: Marine resources are today a renewable source of various compounds, such as polysaccharides, that are used in the pharmaceutical, medical, cosmetic, and food fields. In recent years, considerable attention has been focused on carrageenan-based biomaterials due to their multifunctional qualities, including biodegradability, biocompatibility, and non-toxicity, in addition to bioactive attributes, such as their antiviral, antibacterial, antihyperlipidemic, anticoagulant, antioxidant, antitumor, and immunomodulating properties. They have been applied in pharmaceutical formulations as both their bioactive and physicochemical properties make them suitable biomaterials for drug delivery, and recently for the development of tissue engineering. This article provides a review of recent research on the various types of carrageenan-based biomedical and pharmaceutical applications.

120 citations


Cites background from "Polymer Synthesis and Processing"

  • ...CGs are also insoluble in organic solvents, such as alcohol, ether, and oil [4,36,37]....

    [...]

Journal ArticleDOI
TL;DR: An overview of the use of electrospinning to incorporate biological products into nanofibers, including microorganisms, cells, proteins, and nucleic acids, which has numerous advantages, such as providing protection and facilitating controlled delivery from a solid form with a large surface area.
Abstract: Electrospinning is a technique that uses polymer solutions and strong electric fields to produce nano-sized fibers that have wide-ranging applications. We present here an overview of the use of electrospinning to incorporate biological products into nanofibers, including microorganisms, cells, proteins, and nucleic acids. Although the conditions used during electrospinning limit the already problematic viability/stability of such biological products, their effective incorporation into nanofibers has been shown to be feasible. Synthetic polymers have been more frequently applied to make nanofibers than natural polymers. Polymer blends are commonly used to achieve favorable physical properties of nanofibers. The majority of nanofibers that contain biological product have been designed for therapeutic applications. The incorporation of these biological products into nanofibers can promote their stability or viability, and also allow their delivery to a desired tissue or organ. Other applications include plant protection in agriculture, fermentation in the food industry, biocatalytic environmental remediation, and biosensing. Live cells that have been incorporated into nanofibers include bacteria and fungi. Nanofibers have served as scaffolds for stem cells seeded on a surface, to enable their delivery and application in tissue regeneration and wound healing. Viruses incorporated into nanofibers have been used in gene delivery, as well as in therapies against bacterial infections and cancers. Proteins (hormones, growth factors, and enzymes) and nucleic acids (DNA and RNA) have been incorporated into nanofibers, mainly to treat diseases and enhance their stability. To summarize, incorporation of biological products into nanofibers has numerous advantages, such as providing protection and facilitating controlled delivery from a solid form with a large surface area. Future studies should address the challenge of transferring nanofibers with biological products into practical and industrial use.

90 citations

References
More filters
Book
01 Jan 1985
TL;DR: In this paper, the authors describe a chain transfer characterisation of polymers charge-transfer complexes, charge transfer complexes and charge transfer complexes of charge transfer and charge-Transfer complexes.
Abstract: Cellular Materials Cellulose Cellulose, Biosynthesis Cellulose, Graft Copolymers Cellulose, Microcrystalline Cellulose Derivatives Cellulose Esters, Inorganic Cellulose Esters, Organic Cellulose Ethers Cement Additives Chain-Reaction Polymerization Chain Transfer Characterization of Polymers Charge-Transfer Complexes Chelate- Forming Polymers Chemical Analysis Chemically Resistant Polymers Chitin Chloroprene Polymers Chlorotrifluorethylene Polymers Chromatography Classification of Polymerization Reactions Coating Methods Coatings Coatings, Electrodeposition Cold Forming.

7,256 citations

Journal ArticleDOI
TL;DR: This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.

5,372 citations

Journal ArticleDOI
TL;DR: In this article, a literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA), with an orthorhombic unit cell.
Abstract: A literature review is presented regarding the synthesis, and physicochemical, chemical, and mechanical properties of poly(lactic acid)(PLA). Poly(lactic acid) exists as a polymeric helix, with an orthorhombic unit cell. The tensile properties of PLA can vary widely, depending on whether or not it is annealed or oriented or what its degree of crystallinity is. Also discussed are the effects of processing on PLA. Crystallization and crystallization kinetics of PLA are also investigated. Solution and melt rheology of PLA is also discussed. Four different power-law equations and 14 different Mark–Houwink equations are presented for PLA. Nuclear magnetic resonance, UV–VIS, and FTIR spectroscopy of PLA are briefly discussed. Finally, research conducted on starch–PLA composites is introduced.

3,242 citations

Journal ArticleDOI
TL;DR: In this article, the authors describe the electrospinning process, the processing conditions, fiber morphology, and some possible uses of electrospun fibers, and describe the diameter of these fibers in the range of 0.05 to 5 microns.

2,998 citations

Journal ArticleDOI
TL;DR: This review summarizes the most recent and state of the art work in electrospinning and its uses in tissue engineering and drug delivery and its ability to fabricate fibers with diameters on the nanometer size scale.

2,872 citations