scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polymeric scaffolds in tissue engineering application: a review

TL;DR: An overview of the different types of scaffolds with their material properties is discussed and the fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.
Abstract: Current strategies of regenerative medicine are focused on the restoration of pathologically altered tissue architectures by transplantation of cells in combination with supportive scaffolds and biomolecules. In recent years, considerable interest has been given to biologically active scaffolds which are based on similar analogs of the extracellular matrix that have induced synthesis of tissues and organs. To restore function or regenerate tissue, a scaffold is necessary that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, with subsequent ingrowth until the tissues are totally restored or regenerated. Scaffolds have been used for tissue engineering such as bone, cartilage, ligament, skin, vascular tissues, neural tissues, and skeletal muscle and as vehicle for the controlled delivery of drugs, proteins, and DNA. Various technologies come together to construct porous scaffolds to regenerate the tissues/organs and also for controlled and targeted release of bioactive agents in tissue engineering applications. In this paper, an overview of the different types of scaffolds with their material properties is discussed. The fabrication technologies for tissue engineering scaffolds, including the basic and conventional techniques to the more recent ones, are tabulated.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.
Abstract: Poly(lactic-co-glycolic) acid (PLGA) has attracted considerable interest as a base material for biomedical applications due to its: (i) biocompatibility; (ii) tailored biodegradation rate (depending on the molecular weight and copolymer ratio); (iii) approval for clinical use in humans by the U.S. Food and Drug Administration (FDA); (iv) potential to modify surface properties to provide better interaction with biological materials; and (v) suitability for export to countries and cultures where implantation of animal-derived products is unpopular. This paper critically reviews the scientific challenge of manufacturing PLGA-based materials with suitable properties and shapes for specific biomedical applications, with special emphasis on bone tissue engineering. The analysis of the state of the art in the field reveals the presence of current innovative techniques for scaffolds and material manufacturing that are currently opening the way to prepare biomimetic PLGA substrates able to modulate cell interaction for improved substitution, restoration, or enhancement of bone tissue function.

1,116 citations


Cites background from "Polymeric scaffolds in tissue engin..."

  • ...However, a number of advantages are reported for synthetic polymers as compared with natural polymers, including the highly controlled and consistent degradation properties and excellent reproducible mechanical and physical properties such as tensile strength, elastic modulus and degradation rate [9]....

    [...]

Journal ArticleDOI
TL;DR: It is highlighted that, despite its encouraging results, the clinical approach of Bone Tissue Engineering has not taken place on a large scale yet, due to the need of more in depth studies, its high manufacturing costs and the difficulty to obtain regulatory approval.

857 citations

Journal ArticleDOI
TL;DR: Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects and may open new insights in the near future.
Abstract: This review analyzes the literature of bone grafts and introduces tissue engineering as a strategy in this field of orthopedic surgery. We evaluated articles concerning bone grafts; analyzed characteristics, advantages, and limitations of the grafts; and provided explanations about bone-tissue engineering technologies. Many bone grafting materials are available to enhance bone healing and regeneration, from bone autografts to graft substitutes; they can be used alone or in combination. Autografts are the gold standard for this purpose, since they provide osteogenic cells, osteoinductive growth factors, and an osteoconductive scaffold, all essential for new bone growth. Autografts carry the limitations of morbidity at the harvesting site and limited availability. Allografts and xenografts carry the risk of disease transmission and rejection. Tissue engineering is a new and developing option that had been introduced to reduce limitations of bone grafts and improve the healing processes of the bone fractures and defects. The combined use of scaffolds, healing promoting factors, together with gene therapy, and, more recently, three-dimensional printing of tissue-engineered constructs may open new insights in the near future.

816 citations


Cites background from "Polymeric scaffolds in tissue engin..."

  • ...A pore size of 200–350 μm is optimal for bone ingrowth and facilitates osteoconduction [71]....

    [...]

  • ...Natural polymers are considered as the first biodegradable biomaterials, while synthetic biodegradable polymers can be produced under controlled conditions [34,71]....

    [...]

  • ...These products are often named ‘hybrid’ [17,71-73]....

    [...]

  • ...Bioactive ceramics, such as HA, TCP (TCP is more quickly biodegradable than HAP), and bioactive glasses, react with physiological fluids [71]....

    [...]

  • ...Scaffolds must be highly porous to allow cell ingrowth and facilitate neovascularization of the construct [71]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a review summarizes the current state of knowledge of these crustacean shellfish shellfish wastes and the various ways to use chitin, a polysaccharide that may be extracted after deproteinisation and demineralization of the exoskeletons.
Abstract: Background Food processing produces large quantities of by-products. Disposal of waste can lead to environmental and human health problems, yet often they can be turned into high value, useful products. For example, crustacean shell wastes from shrimp, crab, lobster, and krill contain large amounts of chitin, a polysaccharide that may be extracted after deproteinisation and demineralization of the exoskeletons. Scope and approach This review summarizes the current state of knowledge of these crustacean shellfish wastes and the various ways to use chitin. This biopolymer and its derivatives, such as chitosan, have many biological activities (e.g., anti-cancer, antioxidant, and immune-enhancing) and can be used in various applications (e.g., medical, cosmetic, food, and textile). Key findings and conclusions Due to the huge waste produced each year by the shellfish processing industry and the absence of waste management which represent an environmental hazard, the extraction of chitin from crustaceans’ shells may be a solution to minimize the waste and to produce valuable compound which possess biological properties with application in many fields. As a food waste, it is important to also be aware of the non-food uses of these wastes.

751 citations

Journal ArticleDOI
TL;DR: 3D cellculture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models.
Abstract: Cell culture is an important and necessary process in drug discovery, cancer research, as well as stem cell study. Most cells are currently cultured using two-dimensional (2D) methods but new and improved methods that implement three-dimensional (3D) cell culturing techniques suggest compelling evidence that much more advanced experiments can be performed yielding valuable insights. When performing 3D cell culture experiments, the cell environment can be manipulated to mimic that of a cell in vivo and provide more accurate data about cell-to-cell interactions, tumor characteristics, drug discovery, metabolic profiling, stem cell research, and other types of diseases. Scaffold based techniques such as hydrogel-based support, polymeric hard material-based support, hydrophilic glass fiber, and organoids are employed, and each provide their own advantages and applications. Likewise, there are also scaffold free techniques used such as hanging drop microplates, magnetic levitation, and spheroid microplates with ultra-low attachment coating. 3D cell culture has the potential to provide alternative ways to study organ behavior via the use of organoids and is expected to eventually bridge the gap between 2D cell culture and animal models. The present review compares 2D cell culture to 3D cell culture, provides the details surrounding the different 3D culture techniques, as well as focuses on the present and future applications of 3D cell culture.

634 citations

References
More filters
Journal Article
01 Jan 1993-Science

5,981 citations

Journal ArticleDOI

4,511 citations


"Polymeric scaffolds in tissue engin..." refers background in this paper

  • ...It is commonly believed that the degradation rates of tissue scaffolds must be matched to the rate of various cellular processes in order to optimize tissue regeneration [151, 152]....

    [...]

Journal Article
TL;DR: The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues.
Abstract: Ceramics used for the repair and reconstruction of diseased or damaged parts of the musculo-skeletal system, termed bioceramics, may be bioinert (alumina, zirconia), resorbable (tricalcium phosphate), bioactive (hydroxyapatite, bioactive glasses, and glass-ceramics), or porous for tissue ingrowth (hydroxyapatite-coated metals, alumina). Applications include replacements for hips, knees, teeth, tendons, and ligaments and repair for periodontal disease, maxillofacial reconstruction, augmentation and stabilization of the jaw bone, spinal fusion, and bone fillers after tumor surgery. Carbon coatings are thromboresistant and are used for prosthetic heart valves. The mechanisms of tissue bonding to bioactive ceramics are beginning to be understood, which can result in the molecular design of bioceramics for interfacial bonding with hard and soft tissues. Composites are being developed with high toughness and elastic modulus match with bone. Therapeutic treatment of cancer has been achieved by localized delivery of radioactive isotopes via glass beads. Development of standard test methods for prediction of long-term (20-year) mechanical reliability under load is still needed.

4,213 citations

Journal ArticleDOI
TL;DR: This review summarizes the main advances published over the last 15 years, outlining the synthesis, biodegradability and biomedical applications ofBiodegradable synthetic and natural polymers.

3,801 citations


"Polymeric scaffolds in tissue engin..." refers background in this paper

  • ...PCL Long-term zero-order release [26] Long-term contraceptive device Capronor...

    [...]

  • ...to encourage the rapid regeneration of the tissue [26]....

    [...]

  • ...Natural polymers can be considered as the first biodegradable biomaterials used clinically [26]....

    [...]

Journal ArticleDOI
TL;DR: Challenges in scaffold fabrication for tissue engineering such as biomolecules incorporation, surface functionalization and 3D scaffold characterization are discussed, giving possible solution strategies.

3,505 citations


"Polymeric scaffolds in tissue engin..." refers background in this paper

  • ...Development of composite materials for tissue engineering is attractive since their properties can be engineered to suit the mechanical and physiological demands of the host tissue by controlling the volume fraction, morphology, and arrangement of the reinforcing phase [196]....

    [...]