scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polymeric worm micelles as nano-carriers for drug delivery.

01 Jul 2005-Nanotechnology (IOP Publishing)-Vol. 16, Iss: 7
TL;DR: W worm micelles as blends of degradable polylactic acid and inert block copolymer amphiphiles were prepared for controlled release and initial study of carrier transport through nano-porous media, suggesting a new class of hydrophobic drug nano-carriers that are capable of tissue permeation as well as controlled release.
Abstract: Nanoscale carriers of active compounds, especially drugs, need not be spherical in shape. Worm micelles as blends of degradable polylactic acid (PLA) and inert block copolymer amphiphiles were prepared for controlled release and initial study of carrier transport through nano-porous media. The loading capacity of a typical hydrophobic drug, Triamterene, and the release of hydrophobic dyes were evaluated together with morphological changes of the micelles. Degradation of PLA by hydrolysis led to the self-shortening of worms and a clear transition towards spherical micelles, correlating with the release of hydrophobic dyes. Perhaps equally important for application is the flexibility of worm micelles, which we show allows them to penetrate nanoporous gels where 100 nm sized vesicles cannot enter. Such gels have served as tissue models, and so the results here collectively suggest a new class of hydrophobic drug nano-carriers that are capable of tissue permeation as well as controlled release.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
18 Feb 2008-Polymer
TL;DR: In this paper, a simple route to fabricate functional nano-objects via self-assembly of hybrid materials based on a diblock copolymer was described, and it was demonstrated that swelling of the micelle core due to the water content is the driving force that induces transitions of morphology.

20 citations

Journal ArticleDOI
TL;DR: In this article, the shape transition of an isolated micelle formed by AB-diblockcopolymer and A-homopolymer blends was investigated for three different morphologies: lamlar, cylindrical and spherical.
Abstract: Summary In this paper, we have investigated the shape transition ofanisolatedmicelleformedintheAB-diblockcopolymerandA-homopolymer blends. SCFT has been employed tocompute the CMC for three different morphologies:lamellar, cylindrical and spherical. By comparing theCMC for different shapes, we can determine the preferredmicelle geometry. Several factors can influence the micellemorphology,andwehaveexploredtheeffectsofthediblockasymmetry, the homopolymer/copolymer length ratio andthe monomer–monomer interaction, on the micelle shapetransitions. It is found the micelle undergoes a sequenceof shape transitions, lamellar ! cylindrical ! spherical,when the A-block of the copolymer becomes longer.Previousstudieshaveshowedthesametransitionsequencebut for different ranges of homopolymer molecular weight.Mayes and de la Cruz [12] used the scaling argument andconsidered the case of k<1, while Termonia [22] carried outMonte-Carlo simulation for the system of AB diblockcopolymer in a B-selective solvent. Both studies werefocusedonthecylindricalandsphericalmicelles.Combinedwith results showed in Figure 4 (k¼1) and Figure 5 (k¼2),we can conclude that the transition from cylindrical tospherical micelle is a generic feature upon increasing the A-block length. In experiments, micelles with non-sphericalstructure were observed using transmission electronmicroscopy by Kinning et al.

20 citations

Journal ArticleDOI
TL;DR: In this paper, a controlled radical polymerization of 2-acrylamidoglycolic acid (AGA), a polyelectrolyte capable of chelating various metals, using reversible addition-fragmentation chain transfer (RAFT) polymerization was presented.
Abstract: Polymer–metal hybrids are interesting materials in general and serve as precursors for a wide range of possible applications. Herein, we present the controlled radical polymerization of 2-acrylamidoglycolic acid (AGA), a polyelectrolyte capable of chelating various metals, using reversible addition–fragmentation chain transfer (RAFT) polymerization. Polymerization kinetics and behavior in aqueous solution were investigated for PAGA homopolymers, and we further show that double hydrophilic poly(N-acryloylmorpholine)-block-PAGA (PNAM-b-PAGA) or poly(ethylene oxide)-block-PAGA (PEO-b-PAGA) block copolymers with varying weight fractions of PAGA can be prepared. Upon addition of different metal cations, these block copolymers form wormlike and spherical hybrid assemblies in aqueous media. The aggregates react reversibly to changes in pH, and their size and shape are influenced by the PAGA/metal ratio, the overall PAGA weight fraction, the type of metal cation, and the block copolymer concentration.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the formation of a worm-like-cylinder network of polystyrene-block-poly(ethylene oxide) in N, N-dimethylformamide/water was reported.
Abstract: We report the formation of a highly entangled and interconnected, self-assembled, wormlike-cylinder network of polystyrene-block-poly(ethylene oxide) in N, N-dimethylformamide/water. In this system, N,N-dimethylformamide was a common solvent and water was a selective solvent for the poly(ethylene oxide) blocks. The degrees of polymerization of the polystyrene and poly(ethylene oxide) blocks were 962 and 227, respectively. The network was formed at copolymer concentrations higher than 0.4 wt % and consisted of self-assembled, wormlike cylinders that were interconnected by Y-shaped, T-shaped, and multiple junctions. The network morphology was visualized with transmission electron microscopy. Capillary viscometry measurements revealed an order-of-magnitude increase in the inherent viscosity of the colloidal system upon the formation of the network. A similar effort to obtain a wormlike-cylinder network in an N,N-dimethylformamide/acetonitrile system, in which acetonitrile was a selective solvent for the poly(ethylene oxide) blocks, was unsuccessful even at high copolymer concentrations; instead, the wormlike cylinders showed a tendency to align. The viscosity measurements also did not show a substantial increase in the inherent viscosity. Thus, the solvent played a critical role in determining the formation of the self-assembled, wormlike-cylinder network. This formation of the network resulted from an interplay between the end-capping energy, bending energy (curvature), and configurational entropy of the self-assembled, wormlike-cylinder micelles that minimized the free energy. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3605–3611, 2006

19 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight destinations reached by LIU Guojun and coworkers following these pathways, including self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order.
Abstract: Block copolymers can yield a diverse array of nanostructures. Their assembly structures are influenced by their inherent structures, and the wide variety of structures that can be prepared especially becomes apparent when one considers the number of routes available to prepare block copolymer assemblies. Some examples include self-assembly, directed assembly, coupling, as well as hierarchical assembly, which can yield assemblies having even higher structural order. These assembly routes can also be complemented by processing techniques such as selective crosslinking and etching, the former technique leading to permanent structures, the latter towards sculpted and the combination of the two towards permanent sculpted structures. The combination of these pathways provides extremely versatile routes towards an exciting variety of architectures. This review will attempt to highlight destinations reached by LIU Guojun and coworkers following these pathways.

19 citations

References
More filters
Journal ArticleDOI
TL;DR: The utility of polymeric micelles formed through the multimolecular assembly of block copolymers as novel core-shell typed colloidal carriers for drug and gene targeting and their feasibility as non-viral gene vectors is highlighted.

3,457 citations

Journal ArticleDOI
TL;DR: This review examines the chemical nature of polymeric micelles as well as the methods used to characterize them with regard to drug delivery and potential medical applications, especially in cancer chemotherapy, are described and discussed.

1,200 citations

Journal ArticleDOI
18 Apr 2003-Science
TL;DR: Experiments with poly(1,2-butadiene-b-ethylene oxide) diblock copolymers are described, which form Y-junctions and three-dimensional networks in water at weight fractions of PEO intermediate to those associated with vesicle and wormlike micelle morphologies.
Abstract: Amphiphilic compounds such as lipids and surfactants are fundamental building blocks of soft matter. We describe experiments with poly(1,2-butadiene-b-ethylene oxide) (PB-PEO) diblock copolymers, which form Y-junctions and three-dimensional networks in water at weight fractions of PEOintermediate to those associated with vesicle and wormlike micelle morphologies. Fragmentation of the network produces a nonergodic array of complex reticulated particles that have been imaged by cryogenic transmission electron microscopy. Data obtained with two sets of PB-PEOcompounds indicate that this type of self-assembly appears above a critical molecular weight. These block copolymers represent versatile amphiphiles, mimicking certain low molecular weight three-component (surfactant/water/oil) microemulsions, without addition of a separate hydrophobe.

1,126 citations

Journal ArticleDOI
TL;DR: With all compositions, in both 100 nm and giant vesicles, the average release time reflects a highly quantized process in which any given vesicle is either intact and retains its encapsulant, or is porated and slowly disintegrates.

638 citations

Journal ArticleDOI
12 Feb 1999-Science
TL;DR: A low molecular weight poly(ethyleneoxide)-poly(butadiene) (PEO-PB) diblock copolymer containing 50 weight percent PEO forms gigantic wormlike micelles at low concentrations (<5 percent by weight) in water.
Abstract: A low molecular weight poly(ethyleneoxide)-poly(butadiene) (PEO-PB) diblock copolymer containing 50 weight percent PEO forms gigantic wormlike micelles at low concentrations (<5 percent by weight) in water. Subsequent generation of free radicals with a conventional water-based redox reaction leads to chemical cross-linking of the PB cores without disruption of the cylindrical morphology, as evidenced by cryotransmission electron microscopy and small-angle neutron scattering experiments. These wormlike rubber micelles exhibit unusual viscoelastic properties in water.

626 citations