scispace - formally typeset

Journal ArticleDOI

Polymerization of thiophene containing cyclobutadiene Co cyclopentadiene complexes

01 Jun 2006-Synthetic Metals (Elsevier)-Vol. 156, Iss: 11, pp 784-791

AbstractTo understand the charge transport ability of the metal coordinated cyclobutadiene, a series of cyclobutadiene cobalt cyclopentadiene (CbCoCp) complexes containing electrochemically polymerizable thiophene units were synthesized. The complexes were electrochemically polymerized and the resulting polymers were characterized by cyclic voltammetry, in situ conductivity and UV–vis spectroelectrochemistry. Several different derivatives of the CbCoCp complexes and a model study suggested that if the oxidation of the organic fragment was above Co I/II redox couple of the CbCoCp complex, detrimental side reactions occured. Side reactions did not occurred if the oxidation of the organic fragment was below the metal oxidation.

Topics: Cyclobutadiene (56%), Thiophene (56%), Cyclopentadiene (55%), Sandwich compound (52%), Redox (50%) more

Content maybe subject to copyright    Report

More filters

Journal ArticleDOI
Abstract: The evolution of organotransition metal electrochemistry from its origin with ferrocene to its promise in future applications is presented. Examples are given of key findings on the relationships of electron transfer to molecular structures and to the reactions of organotransition metal complexes.

200 citations

Journal ArticleDOI
TL;DR: Recent developments in the field of synthesis and potential applications of metal-functionalized polymers obtained via electropolymerization are presented, highlighting the significant advances in this field of research.
Abstract: Electropolymerization represents a suitable and well-established approach for the assembly of polymer structures, in particular with regard to the formation of thin, insoluble films. Utilization of monomers that are functionalized with metal complex units allows the combination of structural and functional benefits of polymers and metal moieties. Since a broad range of both electropolymerizable monomers and metal complexes are available, various structures and, thus, applications are possible. Recent developments in the field of synthesis and potential applications of metal-functionalized polymers obtained via electropolymerization are presented, highlighting the significant advances in this field of research.

91 citations

Journal ArticleDOI
Abstract: Metallomacromolecules are attracting considerable attention as a class of macromolecular materials with unique properties and applications. Although ferrocene (Fc)-containing macromolecules have occupied the dominant position for several decades in this area and have led to a variety of architectures and applications, the class of cobalt-sandwich-containing macromolecules has recently undergone a booming development. Especially, polymers and dendrimers containing the 18-e cationic cobalticenium (Cc) unit isoelectronic to Fc have been developed during the last few years after overcoming Cc functionalization problems and following the burst of living polymers and dendrimers. Subsequently, remarkable applications have been disclosed including materials physical properties, healthcare and engineering. Meanwhile several other metallopolymers with Co sandwiches containing cyclobutadiene or carborane ligands have also emerged. This review summarizes the most recent progress in the synthesis of metallomacromolecules containing cobalt sandwich complexes and their functional materials properties. Polymerization techniques have included radical polymerization, reversible addition fragmentation chain transfer (RAFT), ring-opening metathesis polymerization (ROMP), condensation polymerization, ring-opening polymerization (ROP), and atom transfer radical polymerization (ATRP), and post-polymerization has also been used. The applications include the formation of nanostructured materials, magnetic materials, redox recognition and sensing, lithographic patterning, antimicrobial materials, stimuli-responsive materials, catalysis and electrochemical devices.

35 citations

Journal ArticleDOI
TL;DR: Acrylate derivatives of these compounds were found to polymerize giving rise to the first example of polymers containing neutral, 18 e cobaltoarenocenes in the side chain.
Abstract: The synthesis of novel Co(I) polymers featuring CpCo(C4R4) units are reported. The cyclopentadienyl ring on the CpCo(C4R4) unit has been functionalized with acrylate or methacrylate groups. Acrylate derivatives of these compounds were found to polymerize giving rise to the first example of polymers containing neutral, 18 e cobaltoarenocenes in the side chain.

34 citations

Journal ArticleDOI
Abstract: Electrochemistry is employed both as an analytical instrumental technique and as a method of inducing changes in the structure and reactivity of organometallic complexes. It is the primary implemen...

34 citations

More filters

01 Jan 1980
Abstract: Major Symbols. Standard Abbreviations. Introduction and Overview of Electrode Processes. Potentials and Thermodynamics of Cells. Kinetics of Electrode Reactions. Mass Transfer by Migration and Diffusion. Basic Potential Step Methods. Potential Sweep Methods. Polarography and Pulse Voltammetry. Controlled--Current Techniques. Method Involving Forced Convention--Hydrodynamic Methods. Techniques Based on Concepts of Impedance. Bulk Electrolysis Methods. Electrode Reactions with Coupled Homogeneous Chemical Reactions. Double--Layer Structure and Adsorption. Electroactive Layers and Modified Electrodes. Electrochemical Instrumentation. Scanning Probe Techniques. Spectroelectrochemistry and Other Coupled Characterization Methods. Photoelectrochemistry and Electrogenerated Chemiluminescence. Appendix A: Mathematical Methods. Appendix B: Digital Simulations of Electrochemical Problems. Appendix C: Reference Tables. Index.

20,520 citations

01 Jan 1986
Abstract: Volume 1: Conjugated Polymers: Theory, Synthesis, Properties, and Characterization PART 1: THEORY OF CONJUGATED POLYMERS On the Transport, Optical, and Self-Assembly Properties of -Conjugated Materials: A Combined Theoretical/Experimental Insight D. Beljonne, J. Cornil, V. Coropceanu, D.A. da Silva Filho, V. Geskin, R. Lazzaroni, P. Leclere, and J.-L. Bredas Theoretical Studies of Electron-Lattice Dynamics in Organic Systems S. Stafstroem PART 2: SYNTHESIS AND CLASSES OF CONJUGATED POLYMERS Helical Polyacetylene Synthesized in Chiral Nematic Liquid Crystals K. Akagi Synthesis and Properties of Poly(arylene vinylene)s A.C. Grimsdale and A.B. Holmes Blue-Emitting Poly(para-Phenylene)-Type Polymers E.J.W. List and U. Scherf Poly(paraPhenyleneethynylene)s and Poly(aryleneethynylene)s: Materials with a Bright Future U.H.F. Bunz Polyaniline Nanofibers: Synthesis, Properties, and Applications J. Huang and R.B. Kaner Recent Advances in Polypyrrole S.H. Cho, K.T. Song, and J.Y. Lee Regioregular Polythiophenes M. Jeffries-El and R.D. McCullough Poly(3,4-Ethylenedioxythiophene)-Scientific Importance, Remarkable Properties, and Applications S. Kirchmeyer, K. Reuter, and J.C. Simpson Thienothiophenes: From Monomers to Polymers G.A. Sotzing, V. Seshadri, and F.J. Waller Low Bandgap Conducting Polymers S.C. Rasmussen and M. Pomerantz Advanced Functional Polythiophenes Based on Tailored Precursors P. Blanchard, P. Leriche, P. Frere, and J. Roncali Structure-Property Relationships and Applications of Conjugated Polyelectrolytes K.S. Schanze and X. Zhao PART 3: PROPERTIES AND CHARACTERIZATION OF CONJUGATED POLYMERS Insulator-Metal Transition and Metallic State in Conducting Polymers A.J. Epstein One-Dimensional Charge Transport in Conducting Polymer Nanofibers A.N. Aleshin and Y.W. Park Structure Studies of - and - Conjugated Polymers M.J. Winokur Electrochemistry of Conducting Polymers P. Audebert and F. Miomandre Internal Fields and Electrode Interfaces in Organic Semiconductor Devices: Noninvasive Investigations via Electroabsorption T.M. Brown and F. Cacialli Electrochromism of Conjugated Conducting Polymers A.L. Dyer and J.R. Reynolds Photoelectron Spectroscopy of Conjugated Polymers M.P. de Jong, G. Greczyniski, W. Osikowicz, R. Friedlein, X. Crispin, M. Fahlman, and W.R. Salaneck Ultrafast Exciton Dynamics and Laser Action in -ConjugatedSemiconductors Z. Valy Vardeny and O. Korovyanko Volume 2: Conjugated Polymers: Processing and Applications PART 1: PROCESSING OF CONJUGATED POLYMERS Conductive Polymers as Organic Nanometals B. Wessling Conducting Polymer Fiber Production and Applications I.D. Norris and B.R. Mattes Inkjet Printing and Patterning of PEDOT-PSS: Application to Optoelectronic Devices Y. Yoshioka and G.E. Jabbour Printing Organic Electronics on Flexible Substrates N.D. Robinson and M. Berggren PART 2: APPLICATIONS AND DEVICES BASED ON CONJUGATED POLYMERS Polymers for Use in Polymeric Light-Emitting Diodes: Structure-Property Relationships H. Christian-Pandya, S. Vaidyanathan, and M. Galvin Organic Electro-Optic Materials L.R. Dalton Conjugated Polymer Electronics-Engineering Materials and Devices N. Tessler, J. Veres, O. Globerman, N. Rappaport, Y. Preezant, Y. Roichman, O. Solomesch, S. Tal, E. Gershman, M. Adler, V. Zolotarev, V. Gorelik, and Y. Eichen Electrical Bistable Polymer Films and Their Applications in Memory Devices J. Ouyang, C.-W. Chu, R.J. Tseng, A. Prakash, and Y. Yang Electroactive Polymers for Batteries and Supercapacitors J.A. Irvin, D.J. Irvin, and J.D. Stenger-Smith Conjugated Polymer-Based Photovoltaic Devices A.J. Mozer and N.S. Sariciftci Biomedical Applications of Inherently Conducting Polymers (ICPs),P.C. Innis, S.E. Moulton, and G.G. Wallace Biosensors Based on Conducting Electroactive Polymers S. Brahim, A.M. Wilson, and A. Guiseppi-Elie Optical Biosensors Based on Conjugated Polymers K. Peter, R. Nilsson, and O. Inganas Conjugated Polymers for Microelectromechanical and Other Microdevices G.M. Spinks and E. Smela Corrosion Protection Using Conducting Polymers D.E. Tallman and G.P. Bierwagen Artificial Muscles T.F. Otero

5,807 citations

Book ChapterDOI
Abstract: Publisher Summary This review is concerned with the neglected class of inorganic compounds, which contain ions of the same element in two different formal states of oxidation. Although the number of references cited in our review show that many individual examples of this class have been studied, yet they have very rarely been treated as a class, and there has never before, to our knowledge, been a systematic attempt to classify their properties in terms of their electronic and molecular structures. In the past, systems containing an element in two different states of oxidation have gone by various names, the terms “mixed valence,” nonintegral valence,” “mixed oxidation,” “oscillating valency,” and “controlled valency” being used interchangeably. Actually, none of these is completely accurate or all-embracing, but in our hope to avoid the introduction of yet another definition, we have somewhat arbitrarily adopted the phrase “mixed valence” for the description of these systems. The concept of resonance among various valence bond structures is one of the cornerstones of modern organic chemistry.

2,114 citations

Related Papers (5)