scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Polyvinyl alcohol--- heparin hydrogel "G"

01 Nov 1970-Journal of Applied Physiology (American Physiological Society)-Vol. 29, Iss: 5, pp 723-730
About: This article is published in Journal of Applied Physiology.The article was published on 1970-11-01. It has received 83 citations till now. The article focuses on the topics: Polyvinyl alcohol.
Citations
More filters
Journal ArticleDOI
TL;DR: A review of hydrogel-based biomaterial inks and bioinks for 3D printing can be found in this paper, where the authors provide a comprehensive overview and discussion of the tailorability of material, mechanical, physical, chemical and biological properties.
Abstract: 3D printing alias additive manufacturing can transform 3D virtual models created by computer-aided design (CAD) into physical 3D objects in a layer-by-layer manner dispensing with conventional molding or machining. Since the incipiency, significant advancements have been achieved in understanding the process of 3D printing and the relationship of component, structure, property and application of the created objects. Because hydrogels are one of the most feasible classes of ink materials for 3D printing and this field has been rapidly advancing, this Review focuses on hydrogel designs and development of advanced hydrogel-based biomaterial inks and bioinks for 3D printing. It covers 3D printing techniques including laser printing (stereolithography, two-photon polymerization), extrusion printing (3D plotting, direct ink writing), inkjet printing, 3D bioprinting, 4D printing and 4D bioprinting. It provides a comprehensive overview and discussion of the tailorability of material, mechanical, physical, chemical and biological properties of hydrogels to enable advanced hydrogel designs for 3D printing. The range of hydrogel-forming polymers covered encompasses biopolymers, synthetic polymers, polymer blends, nanocomposites, functional polymers, and cell-laden systems. The representative biomedical applications selected demonstrate how hydrogel-based 3D printing is being exploited in tissue engineering, regenerative medicine, cancer research, in vitro disease modeling, high-throughput drug screening, surgical preparation, soft robotics and flexible wearable electronics. Incomparable by thermoplastics, thermosets, ceramics and metals, hydrogel-based 3D printing is playing a pivotal role in the design and creation of advanced functional (bio)systems in a customizable way. An outlook on future directions of hydrogel-based 3D printing is presented.

427 citations

Journal ArticleDOI
TL;DR: Methods of surface modification with water-soluble polymers, such as polyethylene oxide, albumin, and heparin, are reviewed, which have significantly improved the blood compatibility of polymeric biomaterials.
Abstract: Appropriate surface modification has significantly improved the blood compatibility of polymeric biomaterials. This article reviews methods of surface modification with water-soluble polymers, such as polyethylene oxide (PEO), albumin, and heparin. PEO is a synthetic, neutral, watersoluble polymer, while albumin and heparin are a natural globular protein and an anionic polysaccharide, respectively. When grafted onto the surface, all three macromolecules share a common feature to reduce thrombogenicity of biomaterials. The reduced thrombogenicity is due to the unique hydrodynamic properties of the grafted macromolecules. In aqueous medium, surface-bound water-soluble polymers are expected to be highly flexible and extend into the bulk solution. Biomaterials grafted with either PEO, albumin, or heparin are able to resist plasma porotein adsorption and platelet adhesion predominantly by a steric repulsion mechanism.

338 citations

Journal ArticleDOI
TL;DR: Heparin was immobilized onto segmented polyurethane-urea surfaces (Biomer) using hydrophilic poly(ethylene oxide) spacers of different chain lengths, indicating an ability of immobilized heparin to inhibit thrombosis in whole blood.
Abstract: Heparin was immobilized onto segmented polyurethane-urea surfaces (Biomer) using hydrophilic poly(ethylene oxide) spacers of different chain lengths. The use of the hydrophilic spacer, poly(ethylene oxide), reduces protein adsorption and subsequent platelet adhesion on the surface. In addition, the bioactivity of the immobilized heparin is enhanced by the incorporation of these spacers. Immobilized heparin bioactivity is shown to be a function of PEO spacer length. Use of hydrophilic PEO spacers demonstrates that immobilized heparin's bioactivity is consistently higher than that of the C6 alkyl spacer, but heparin-immobilized surfaces demonstrate no chain length effect on platelet adhesion, even though they show less platelet adhesion compared to Biomer controls. In the case of PEO-grafted surfaces, platelet adhesion is decreased compared to Biomer controls, and C6 alkyl spacer-grafted surfaces, and exhibits a minimum at PEO 1000. In ex vivo A-A shunt experiments under low flow and low shear conditions, all heparinized surfaces exhibit significant prolongation of occlusion times compared to Biomer controls, indicating an ability of immobilized heparin to inhibit thrombosis in whole blood.

225 citations

Journal ArticleDOI
TL;DR: A brief history of hydrogels in medicine is provided and a discussion of the synthesis and implementation of dynamic hydrogel microenvironments for healthcare-related applications is discussed.

196 citations

Journal ArticleDOI
TL;DR: Swollen crosslinked poly(vinyl alcohol) (PVA) networks were developed and tested as potential biomaterials and are proposed to be used as biomembranes for selective transport of macromolecules and as biommaterials for synthetic articular cartilage applications.
Abstract: Swollen crosslinked poly(vinyl alcohol) (PVA) networks were developed and tested as potential biomaterials. They were prepared by electron-beam irradiation of aqueous PVA solutions at various temperatures and doses of irradiation. These materials were characterized by low mechanical properties and especially by low elongation at break and ultimate tensile strength. Reinforcement was achieved by a two-stage dehydration-annealing process, introducing crystallites in the polymeric network. Improved mechanical properties were achieved due to the presence of this crystalline PVA phase. Due to their structure, these hydrogels are proposed to be used as biomembranes for selective transport of macromolecules and as biomaterials for synthetic articular cartilage applications. Surface heparinization was accomplished by reacting heparin to the hydroxyl groups of the PVA surface, through covalent acetal bridges.

187 citations