scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Population biology of infectious diseases: Part II

02 Aug 1979-Nature (Nature)-Vol. 280, Iss: 5722, pp 455-461
TL;DR: Consideration is given to the relation between the ecology and evolution of the transmission processes and the overall dynamics, and to the mechanisms that can produce cyclic patterns, or multiple stable states, in the levels of infection in the host population.
Abstract: If the host population is taken to be a dynamic variable (rather than constant, as conventionally assumed), a wider understanding of the population biology of infectious diseases emerges. In this first part of a two-part article, mathematical models are developed, shown to fit data from laboratory experiments, and used to explore the evolutionary relations among transmission parameters. In the second part of the article, to be published in next week's issue, the models are extended to include indirectly transmitted infections, and the general implications for infectious diseases are considered.
Citations
More filters
Journal ArticleDOI
TL;DR: Threshold theorems involving the basic reproduction number, the contact number, and the replacement number $R$ are reviewed for classic SIR epidemic and endemic models and results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups.
Abstract: Many models for the spread of infectious diseases in populations have been analyzed mathematically and applied to specific diseases. Threshold theorems involving the basic reproduction number $R_{0}$, the contact number $\sigma$, and the replacement number $R$ are reviewed for the classic SIR epidemic and endemic models. Similar results with new expressions for $R_{0}$ are obtained for MSEIR and SEIR endemic models with either continuous age or age groups. Values of $R_{0}$ and $\sigma$ are estimated for various diseases including measles in Niger and pertussis in the United States. Previous models with age structure, heterogeneity, and spatial structure are surveyed.

5,915 citations

Journal ArticleDOI
21 Jan 2000-Science
TL;DR: These phenomena have two major biological implications: many wildlife species are reservoirs of pathogens that threaten domestic animal and human health; second, wildlife EIDs pose a substantial threat to the conservation of global biodiversity.
Abstract: Emerging infectious diseases (EIDs) of free-living wild animals can be classified into three major groups on the basis of key epizootiological criteria: (i) EIDs associated with “spill-over” from domestic animals to wildlife populations living in proximity; (ii) EIDs related directly to human intervention, via host or parasite translocations; and (iii) EIDs with no overt human or domestic animal involvement. These phenomena have two major biological implications: first, many wildlife species are reservoirs of pathogens that threaten domestic animal and human health; second, wildlife EIDs pose a substantial threat to the conservation of global biodiversity.

3,757 citations

Journal ArticleDOI
22 Oct 1982-Science
TL;DR: In this paper, a combination of seven surveys of blood parasites in North American passerines reveals weak, highly significant association over species between incidence of chronic blood infections (five genera of protozoa and one nematode) and striking display (three characters: male "brightness", female "brights", and male song).
Abstract: Combination of seven surveys of blood parasites in North American passerines reveals weak, highly significant association over species between incidence of chronic blood infections (five genera of protozoa and one nematode) and striking display (three characters: male "brightness," female "brightness," and male song). This result conforms to a model of sexual selection in which (i) coadaptational cycles of host and parasites generate consistently positive offspring-on-parent regression of fitness, and (ii) animals choose mates for genetic disease resistance by scrutiny of characters whose full expression is dependent on health and vigor.

3,537 citations

Book
28 Oct 2007
TL;DR: Mathematical modeling of infectious dis-eases has progressed dramatically over the past 3 decades and continues to be a valuable tool at the nexus of mathematics, epidemiol-ogy, and infectious diseases research.
Abstract: By Matthew James Keelingand Pejman RohaniPrinceton, NJ: Princeton University Press,2008.408 pp., Illustrated. $65.00 (hardcover).Mathematical modeling of infectious dis-eases has progressed dramatically over thepast 3 decades and continues to flourishat the nexus of mathematics, epidemiol-ogy, and infectious diseases research. Nowrecognized as a valuable tool, mathemat-ical models are being integrated into thepublic health decision-making processmore than ever before. However, despiterapid advancements in this area, a formaltraining program for mathematical mod-eling is lacking, and there are very fewbooks suitable for a broad readership. Tosupport this bridging science, a commonlanguage that is understood in all con-tributing disciplines is required.

3,467 citations

Journal ArticleDOI
26 Jan 1984-Nature
TL;DR: Early studies suggested that simple ecosystems were less stable than complex ones, but later studies came to the opposite conclusion as discussed by the authors. Confusion arose because of the many different meanings of "complexity" and "stability".
Abstract: Early studies suggested that simple ecosystems were less stable than complex ones, but later studies came to the opposite conclusion. Confusion arose because of the many different meanings of ‘complexity’ and ‘stability’. Most of the possible questions about the relationship between stability–complexity have not been asked. Those that have yield a variety of answers.

2,519 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors considered the problem of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population.
Abstract: (1) One of the most striking features in the study of epidemics is the difficulty of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population. It was with a view to obtaining more insight regarding the effects of the various factors which govern the spread of contagious epidemics that the present investigation was undertaken. Reference may here be made to the work of Ross and Hudson (1915-17) in which the same problem is attacked. The problem is here carried to a further stage, and it is considered from a point of view which is in one sense more general. The problem may be summarised as follows: One (or more) infected person is introduced into a community of individuals, more or less susceptible to the disease in question. The disease spreads from the affected to the unaffected by contact infection. Each infected person runs through the course of his sickness, and finally is removed from the number of those who are sick, by recovery or by death. The chances of recovery or death vary from day to day during the course of his illness. The chances that the affected may convey infection to the unaffected are likewise dependent upon the stage of the sickness. As the epidemic spreads, the number of unaffected members of the community becomes reduced. Since the course of an epidemic is short compared with the life of an individual, the population may be considered as remaining constant, except in as far as it is modified by deaths due to the epidemic disease itself. In the course of time the epidemic may come to an end. One of the most important probems in epidemiology is to ascertain whether this termination occurs only when no susceptible individuals are left, or whether the interplay of the various factors of infectivity, recovery and mortality, may result in termination, whilst many susceptible individuals are still present in the unaffected population. It is difficult to treat this problem in its most general aspect. In the present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.

8,238 citations

01 Jan 1927
TL;DR: The present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.
Abstract: (1) One of the most striking features in the study of epidemics is the difficulty of finding a causal factor which appears to be adequate to account for the magnitude of the frequent epidemics of disease which visit almost every population. It was with a view to obtaining more insight regarding the effects of the various factors which govern the spread of contagious epidemics that the present investigation was undertaken. Reference may here be made to the work of Ross and Hudson (1915-17) in which the same problem is attacked. The problem is here carried to a further stage, and it is considered from a point of view which is in one sense more general. The problem may be summarised as follows: One (or more) infected person is introduced into a community of individuals, more or less susceptible to the disease in question. The disease spreads from the affected to the unaffected by contact infection. Each infected person runs through the course of his sickness, and finally is removed from the number of those who are sick, by recovery or by death. The chances of recovery or death vary from day to day during the course of his illness. The chances that the affected may convey infection to the unaffected are likewise dependent upon the stage of the sickness. As the epidemic spreads, the number of unaffected members of the community becomes reduced. Since the course of an epidemic is short compared with the life of an individual, the population may be considered as remaining constant, except in as far as it is modified by deaths due to the epidemic disease itself. In the course of time the epidemic may come to an end. One of the most important probems in epidemiology is to ascertain whether this termination occurs only when no susceptible individuals are left, or whether the interplay of the various factors of infectivity, recovery and mortality, may result in termination, whilst many susceptible individuals are still present in the unaffected population. It is difficult to treat this problem in its most general aspect. In the present communication discussion will be limited to the case in which all members of the community are initially equally susceptible to the disease, and it will be further assumed that complete immunity is conferred by a single infection.

7,769 citations

Book
01 Jan 1954

3,086 citations

Journal ArticleDOI
01 Jan 1971

2,397 citations