scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China

TL;DR: In this article, the surface fractals of pore surface were analyzed with surface fractal dimensions and the results showed that the more irregular surface, the more inhomogeneous pore structures is, meaning more surface area and then stronger adsorption capability.
About: This article is published in Fuel.The article was published on 2013-01-01. It has received 512 citations till now. The article focuses on the topics: Porosimetry & Adsorption.
Citations
More filters
Journal ArticleDOI
15 Oct 2015-Fuel
TL;DR: In this paper, the pore geometry of coal samples with different metamorphism has been analyzed using low-pressure nitrogen gas adsorption (LP-N2GA) and scanning electron microscopy (SEM).

498 citations

Journal ArticleDOI
01 Jan 2014-Fuel
TL;DR: In this paper, the impact of fractal dimension on adsorption capacity has been discussed based on the physical description of the fractal surfaces, and the authors showed that fractal geometries with fractal dimensions ranging from 2.68 to 2.83 were obtained from the nitrogen adsorptions data using the Frenkel-Halsey-Hill method.

493 citations

Journal ArticleDOI
TL;DR: In this paper, the porosities and pore characteristics of bulk shales and isolated kerogens were determined for immature, oil-window, and gas-window mature samples from the Lower Toarcian Posidonia shale formation.
Abstract: Sorption capacities and pore characteristics of bulk shales and isolated kerogens have been determined for immature, oil-window, and gas-window mature samples from the Lower Toarcian Posidonia shale formation. Dubinin–Radushkevich (DR) micropore volumes, sorption pore volumes, and surface areas of shales and kerogens were determined from CO2 adsorption isotherms at −78 and 0 °C, and from N2 adsorption isotherms at −196 °C. Mercury injection capillary pressure porosimetry, grain density measurements, and helium pycnometry were used to determine shale and kerogen densities and total pore volumes. Total porosities decrease through the oil-window and then increase into the gas-window. High-pressure methane isotherms up to 14 MPa were determined at 45, 65, and 85 °C on dry shale and at 45 and 65 °C on kerogen. Methane excess uptakes at 65 °C and 11.5 MPa were in the range 0.056–0.110 mmol g–1 (40–78 scf t–1) for dry Posidonia shales and 0.36–0.70 mmol g–1 (253–499 scf t–1) for the corresponding dry kerogens. A...

332 citations

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper used low temperature nitrogen adsorption tests to characterize pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal (coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples.
Abstract: To characterize the pore features of outburst coal samples and investigate whether outburst coal has some unique features or not, one of the authors, working as the member of the State Coal Mine Safety Committee of China, sampled nine outburst coal samples (coal powder and block) from outburst disaster sites in underground coal mines in China, and then analyzed the pore and surface features of these samples using low temperature nitrogen adsorption tests. Test data show that outburst powder and block coal samples have similar properties in both pore size distribution and surface area. With increasing coal rank, the proportion of micropores increases, which results in a higher surface area. The Jiulishan samples are rich in micropores, and other tested samples contain mainly mesopores, macropores and fewer micropores. Both the unclosed hysteresis loop and force closed desorption phenomena are observed in all tested samples. The former can be attributed to the instability of the meniscus condensation in pores, interconnected pore features of coal and the potential existence of ink-bottle pores, and the latter can be attributed to the non-rigid structure of coal and the gas affinity of coal.

254 citations

Journal ArticleDOI
01 Oct 2016-Fuel
TL;DR: In this paper, the complex pore structures of 12 shale samples collected from two marine shale formations in upper Yangtze area (UYA) in China were characterized using field emission scanning electron microscopy (FE-SEM), high pressure mercury intrusion porosimetry (MIP), and low pressure N2/CO2 adsorption.

198 citations

References
More filters
Journal ArticleDOI
TL;DR: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, and les donnes sur la mesoporosite et la microporosite.
Abstract: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, et les donnees sur la mesoporosite et la microporosite

20,347 citations

Journal ArticleDOI
TL;DR: In this article, the rate of penetration into a small cylindrical capillary of radius $r$ was shown to be: ρ(r}^{2}+4\ensuremath{\epsilon}r)
Abstract: Penetration of Liquids into Cylindrical Capillaries.---The rate of penetration into a small capillary of radius $r$ is shown to be: $\frac{\mathrm{dl}}{\mathrm{dt}}=\frac{P({r}^{2}+4\ensuremath{\epsilon}r)}{8\ensuremath{\eta}l}$, where $P$ is the driving pressure, $\ensuremath{\epsilon}$ the coefficient of slip and $\ensuremath{\eta}$ the viscosity. By integrating this expression, the distance penetrated by a liquid flowing under capillary pressure alone into a horizontal capillary or one with small internal surface is found to be the square root of ($\frac{\ensuremath{\gamma}\mathrm{rt}\ifmmode\cdot\else\textperiodcentered\fi{}cos\ensuremath{\theta}}{2\ensuremath{\eta}}$), where $\ensuremath{\gamma}$ is the surface tension and $\ensuremath{\theta}$ the angle of contact. The quantity ($\frac{\ensuremath{\gamma}cos\ensuremath{\theta}}{2\ensuremath{\eta}}$) is called the coefficient of penetrance or the penetrativity of the liquid.Penetration of Liquids into a Porous Body.---(1) Theory. If a porous body behaves as an assemblage of very small cylindrical capillaries, the volume which penetrates in a time $t$ would be proportional to the square root of ($\frac{\ensuremath{\gamma}t}{\ensuremath{\eta}}$). (2) Experiments with mercury, water and other liquids completely verify the theoretical deductions.Dynamic capillary method of measuring surface tension is described. It possesses certain advantages on the static method of capillary rise.

5,658 citations


Additional excerpts

  • ...Surface fractal dimension calculation using mercury porosimetry data can be described based on Washburn Equation [36] and fractal sponge model [25,27,29,37] as follows:...

    [...]

Journal ArticleDOI
TL;DR: Enginsera et al. as discussed by the authors proposed an idealized model for the purpose of studying the characteristic behavior of a permeable medium which contains regions which contribute significantly to the pore volume of the system but contribute negligibly to the flow capacity.
Abstract: An idealized model has been developed for the purpose of studying the characteristic behavioroja permeable medium which contains regions which contribute sigizificantly to tbe pore volume O! the system but contribute negligibly to the flow capacity; e.g., a naturally fractured or vugular reservoir, Vnsteady-state flow in this model reservoir has been investigated analytically. The pressure buiid-up performance has been examined insomedetait; and, a technique foranalyzing tbebuild.up data to evaluate the desired parameters has been suggested. The use of this ap$roacb in the interpretation of field data has been discussed. As a result of this study, the following general conclusions can be drawn: 1. Two parameters are sufficient to characterize the deviation of the behavior of a medium with “double porosity ”from that of a homogeneously porous medium. 2. These Parameters can be evaluated by the proper analy~is of pressure buildup data ob~ained from adequately designed tests. 3. Since the build-up curve associated with this type of porous system is similar to that obtained from a stratified reservoir, an unambiguous interpretation is not possible without additional information. 4, Dif@rencing methods which utilize pressure data from the /inal stages of a buik-kp test should be used with extreme caution. INTRODUCTION In order to plan a sound exploitation program or a successful secondary-recovery pro ject, sufficient reliable information concerning the nature of the reservoir-fluid system must be available. Sincef it is evident chat an adequate description of the reservoir rock is necessary if this condition is to be fulfilled, the present investigation was undertaken for the purpose of improving the fluid-flow characterization, based on normally available data, ofs particular porous medium. DISCUSSION OF THE PROBLEM For many years it was widely assumed that, for the purpose of making engineering studies, two psram. . -. . Origlml manuscriptreceived fn eociaty of Petroleum Ertatneere offiae AUS. 17, 1962.Revieed manuscriptreceived.March21, 1963. P eper pr+$eented at the Fetl Meeting of the %ciot Y of. Petreleum Enginsera In Lo= Ar@Ies on Oct. 7-10, 1962. ‘ . GULF RESEARCH d DEVELOPMENT CO. PITTSBURGH, PA, eters were sufficient to desckibe the single-phase flow properties of a prodttcing formation, i.e., the absolute permeability and the effective porosity. It : later became evident that the concept of directional permeability was of more thin academic interest; consequently, the de$ee of permeability anisotropy and the orientation of the principal axes of permeability were accepted as basic parameters governing reservoir performance. 1,2 More recently, 3“6 it was recognized that at least one additional parameter was required to depict the behavior of a porous system containing region,s which contributed significantly to the pore volume but contributed negligibly to the flow capacity. Microscopically, these regions could be “dead-end” or “storage” pores or, microscopically, they could be discrete volumes of lowpermeability inatrix rock combined with natural fissures in a reservoir. It is obvious thst some provision for the ;.ncIusion of all the indicated parameters, as weIl as their spatial vstiations$ must be made if a truly useful, conceptual model of a reaetvoir is to be developed. A dichotomy Qf the internaI voids of reservoir rocks has been suggested, r~s These two classes of porosity can be described as follows: a. Primary porosity is intergranular and controlled by deposition and Iithification. It ie highly intercoririected arid “usually can be correlated with permeability since it is largely dependent on the geometry, size distribution and spatial distribution of the grains. The void systems of sands, sandstones and oolitic limestones are typical of this type. b. Secondary porosity is foramenular and is controlled by fracturing, jointing and/or solution in circulating water although it may be modified by infilling as a result of precipitation. It is not highly interconnected and usually cannot be correlated with permeability. Solution channels or vugular voids developed during weathering or buriaI in sedimentary basins are indigenous to carbonate rocks such as limestones or dolomites. Joints or fissures which occur in massive, extensive formations composed of shale, siltstone, schist, limestone or dolomite are generally vertical, and they are ascribed to tensional failure, during mechanical deformation (the permeability associated with this type of void system is often anisotropic). Shrinkage cracks are the result 1 ~ef&ence. aiven atendof p@er. ‘-

3,373 citations


Additional excerpts

  • ...Second, coal is characterized as a dual pore system [2] including the primary porosity consisting of micropores/mesopores in the coal matrix and the secondary porosity composed of non-uniformly distributed macropores and microfractures....

    [...]

Journal ArticleDOI

2,751 citations


Additional excerpts

  • ...According to the Kozeny– Carman permeability equation [51,52], the permeability should be directly proportional to porosity, grain size, and average pore throat size....

    [...]