scispace - formally typeset
Journal ArticleDOI

Porous, Crystalline, Covalent Organic Frameworks

Reads0
Chats0
TLDR
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract
Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).

read more

Citations
More filters
Journal ArticleDOI

Designed synthesis of 3D covalent organic frameworks.

TL;DR: Three-dimensional covalent organic frameworks (3D COFs) were synthesized by targeting two nets based on triangular and tetrahedral nodes: ctn and bor and have high thermal stabilities and high surface areas and extremely low densities.
Journal ArticleDOI

Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water

TL;DR: Modular optimization of covalent organic frameworks (COFs) is reported, in which the building units are cobalt porphyrin catalysts linked by organic struts through imine bonds, to prepare a catalytic material for aqueous electrochemical reduction of CO2 to CO.
Journal ArticleDOI

Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction.

TL;DR: The first application of a new COF material, COF-LZU1, for highly efficient catalysis, which possesses a two-dimensional eclipsed layered-sheet structure, making its incorporation with metal ions feasible.
Journal ArticleDOI

The atom, the molecule, and the covalent organic framework

TL;DR: The ability to design COFs and to adjust their pore metrics using the principles of reticular synthesis has given rise to frameworks with ultralow densities, which has resulted in the first implementation of the concept of molecular weaving.
Journal ArticleDOI

Design and Preparation of Porous Polymers

TL;DR: This work presents a new mesoporous composite material suitable for high-performance liquid chromatography and shows good chiral recognition ability and high uniformity in various racemates.
References
More filters
Book

Adsorption by Powders and Porous Solids: Principles, Methodology and Applications

TL;DR: In this paper, the authors provide an introductory review of the various theoretical and practical aspects of adsorption by powders and porous solids with particular reference to materials of technological importance.
Journal ArticleDOI

An ordered mesoporous organosilica hybrid material with a crystal-like wall structure.

TL;DR: The surfactant-mediated synthesis of an ordered benzene–silica hybrid material has an hexagonal array of mesopores and crystal-like pore walls that exhibit structural periodicity, and it is expected that other organosilicas and organo-metal oxides can be produced in a similar fashion, to yield a range of hierarchically ordered mesoporous solids with molecular-scale pore surface periodicity.
Journal ArticleDOI

Unified Approach to Pore Size Characterization of Microporous Carbonaceous Materials from N2, Ar, and CO2 Adsorption Isotherms†

TL;DR: In this paper, a unified approach to pore size characterization of microporous carbonaceous materials such as activated carbon and carbon fibers by nitrogen, argon, and carbon dioxide adsorption at standard temperatures, 77 K for N2 and Ar and 273 K for CO2, was presented.
Journal ArticleDOI

Adsorption Study of Surface and Structural Properties of MCM-41 Materials of Different Pore Sizes

TL;DR: In this paper, the pore size of MCM-41 materials was estimated based on geometrical considerations of the ratio of pore volume to pore wall volume for an infinite hexagonal array of cylindrical pores.
Related Papers (5)