scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Porous, Crystalline, Covalent Organic Frameworks

18 Nov 2005-Science (American Association for the Advancement of Science)-Vol. 310, Iss: 5751, pp 1166-1170
TL;DR: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid and hexahydroxytriphenylene to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms.
Abstract: Covalent organic frameworks (COFs) have been designed and successfully synthesized by condensation reactions of phenyl diboronic acid {C6H4[B(OH)2]2} and hexahydroxytriphenylene [C18H6(OH)6]. Powder x-ray diffraction studies of the highly crystalline products (C3H2BO)6.(C9H12)1 (COF-1) and C9H4BO2 (COF-5) revealed expanded porous graphitic layers that are either staggered (COF-1, P6(3)/mmc) or eclipsed (COF-5, P6/mmm). Their crystal structures are entirely held by strong bonds between B, C, and O atoms to form rigid porous architectures with pore sizes ranging from 7 to 27 angstroms. COF-1 and COF-5 exhibit high thermal stability (to temperatures up to 500 degrees to 600 degrees C), permanent porosity, and high surface areas (711 and 1590 square meters per gram, respectively).
Citations
More filters
Journal ArticleDOI
TL;DR: In conclusion, MOFs as Host Matrices or Nanometric Reaction Cavities should not be considered as a source of concern in the determination of MOFs’ properties in relation to other materials.
Abstract: 2.2. MOFs with Metal Active Sites 4614 2.2.1. Early Studies 4614 2.2.2. Hydrogenation Reactions 4618 2.2.3. Oxidation of Organic Substrates 4620 2.2.4. CO Oxidation to CO2 4626 2.2.5. Phototocatalysis by MOFs 4627 2.2.6. Carbonyl Cyanosilylation 4630 2.2.7. Hydrodesulfurization 4631 2.2.8. Other Reactions 4632 2.3. MOFs with Reactive Functional Groups 4634 2.4. MOFs as Host Matrices or Nanometric Reaction Cavities 4636

3,106 citations

Journal ArticleDOI
TL;DR: This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials.
Abstract: Covalent organic frameworks (COFs) represent an exciting new type of porous organic materials, which are ingeniously constructed with organic building units via strong covalent bonds. The well-defined crystalline porous structures together with tailored functionalities have offered the COF materials superior potential in diverse applications, such as gas storage, adsorption, optoelectricity, and catalysis. Since the seminal work of Yaghi and co-workers in 2005, the rapid development in this research area has attracted intensive interest from researchers with diverse expertise. This critical review describes the state-of-the-art development in the design, synthesis, characterisation, and application of the crystalline porous COF materials. Our own opinions on further development of the COF materials are also presented for discussion (155 references).

2,572 citations

Journal ArticleDOI
TL;DR: This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration of covalent organic frameworks.
Abstract: Covalent organic frameworks (COFs) are a class of crystalline porous polymers that allow the atomically precise integration of organic units to create predesigned skeletons and nanopores. They have recently emerged as a new molecular platform for designing promising organic materials for gas storage, catalysis, and optoelectronic applications. The reversibility of dynamic covalent reactions, diversity of building blocks, and geometry retention are three key factors involved in the reticular design and synthesis of COFs. This tutorial review describes the basic design concepts, the recent synthetic advancements and structural studies, and the frontiers of functional exploration.

2,182 citations

Journal ArticleDOI
TL;DR: Findings place COFs among the most porous and the best adsorbents for hydrogen, methane, and carbon dioxide.
Abstract: Dihydrogen, methane, and carbon dioxide isotherm measurements were performed at 1−85 bar and 77−298 K on the evacuated forms of seven porous covalent organic frameworks (COFs). The uptake behavior and capacity of the COFs is best described by classifying them into three groups based on their structural dimensions and corresponding pore sizes. Group 1 consists of 2D structures with 1D small pores (9 A for each of COF-1 and COF-6), group 2 includes 2D structures with large 1D pores (27, 16, and 32 A for COF-5, COF-8, and COF-10, respectively), and group 3 is comprised of 3D structures with 3D medium-sized pores (12 A for each of COF-102 and COF-103). Group 3 COFs outperform group 1 and 2 COFs, and rival the best metal−organic frameworks and other porous materials in their uptake capacities. This is exemplified by the excess gas uptake of COF-102 at 35 bar (72 mg g−1 at 77 K for hydrogen, 187 mg g−1 at 298 K for methane, and 1180 mg g−1 at 298 K for carbon dioxide), which is similar to the performance of COF...

2,102 citations

References
More filters