scispace - formally typeset
Search or ask a question

Porous Hollow Carbon Sulfur Composites for High Power Lithium-Sulfur Batteries

01 Aug 2011-Iss: 7, pp 341-341
TL;DR: C @ S nanocomposites based on mesoporous hollow carbon capsules, a restricted polysulfide shuttling and an improved electron transport on sulfur are attributed to their excellent properties as a cathode material in a lithium secondary battery of S-sequestration of elemental sulfur.
About: The article was published on 2011-08-01 and is currently open access. It has received 1605 citations till now. The article focuses on the topics: Nanoarchitectures for lithium-ion batteries & Sulfur.
Citations
More filters
Journal ArticleDOI
TL;DR: The energy that can be stored in Li-air and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed.
Abstract: Li-ion batteries have transformed portable electronics and will play a key role in the electrification of transport. However, the highest energy storage possible for Li-ion batteries is insufficient for the long-term needs of society, for example, extended-range electric vehicles. To go beyond the horizon of Li-ion batteries is a formidable challenge; there are few options. Here we consider two: Li-air (O(2)) and Li-S. The energy that can be stored in Li-air (based on aqueous or non-aqueous electrolytes) and Li-S cells is compared with Li-ion; the operation of the cells is discussed, as are the significant hurdles that will have to be overcome if such batteries are to succeed. Fundamental scientific advances in understanding the reactions occurring in the cells as well as new materials are key to overcoming these obstacles. The potential benefits of Li-air and Li-S justify the continued research effort that will be needed.

7,895 citations

Journal ArticleDOI
TL;DR: In this article, a review of the key technological developments and scientific challenges for a broad range of Li-ion battery electrodes is presented, and the potential/capacity plots are used to compare many families of suitable materials.

5,057 citations

Journal ArticleDOI

3,654 citations

Journal ArticleDOI
TL;DR: The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.
Abstract: Energy-storage technologies, including electrical double-layer capacitors and rechargeable batteries, have attracted significant attention for applications in portable electronic devices, electric vehicles, bulk electricity storage at power stations, and “load leveling” of renewable sources, such as solar energy and wind power. Transforming lithium batteries and electric double-layer capacitors requires a step change in the science underpinning these devices, including the discovery of new materials, new electrochemistry, and an increased understanding of the processes on which the devices depend. The Review will consider some of the current scientific issues underpinning lithium batteries and electric double-layer capacitors.

2,412 citations

Journal ArticleDOI
TL;DR: Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.
Abstract: With the increasing demand for efficient and economic energy storage, Li-S batteries have become attractive candidates for the next-generation high-energy rechargeable Li batteries because of their high theoretical energy density and cost effectiveness. Starting from a brief history of Li-S batteries, this Review introduces the electrochemistry of Li-S batteries, and discusses issues resulting from the electrochemistry, such as the electroactivity and the polysulfide dissolution. To address these critical issues, recent advances in Li-S batteries are summarized, including the S cathode, Li anode, electrolyte, and new designs of Li-S batteries with a metallic Li-free anode. Constructing S molecules confined in the conductive microporous carbon materials to improve the cyclability of Li-S batteries serves as a prospective strategy for the industry in the future.

2,213 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors report the feasibility to approach such capacities by creating highly ordered interwoven composites, where conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur.
Abstract: The Li-S battery has been under intense scrutiny for over two decades, as it offers the possibility of high gravimetric capacities and theoretical energy densities ranging up to a factor of five beyond conventional Li-ion systems. Herein, we report the feasibility to approach such capacities by creating highly ordered interwoven composites. The conductive mesoporous carbon framework precisely constrains sulphur nanofiller growth within its channels and generates essential electrical contact to the insulating sulphur. The structure provides access to Li+ ingress/egress for reactivity with the sulphur, and we speculate that the kinetic inhibition to diffusion within the framework and the sorption properties of the carbon aid in trapping the polysulphides formed during redox. Polymer modification of the carbon surface further provides a chemical gradient that retards diffusion of these large anions out of the electrode, thus facilitating more complete reaction. Reversible capacities up to 1,320 mA h g(-1) are attained. The assembly process is simple and broadly applicable, conceptually providing new opportunities for materials scientists for tailored design that can be extended to many different electrode materials.

5,151 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries and present experimental evidence that selfdischarge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.
Abstract: This work reports a quantitative analysis of the shuttle phenomenon in Li/S rechargeable batteries. The work encompasses theoretical models of the charge process, charge and discharge capacity, overcharge protection, thermal effects, self-discharge, and a comparison of simulated and experimental data. The work focused on the features of polysulfide chemistry and polysulfide interaction with the Li anode, a quantitative description of these phenomena, and their application to the development of a high-energy rechargeable battery. The objective is to present experimental evidence that self-discharge, charge-discharge efficiency, charge profile, and overcharge protection are all facets of the same phenomenon.

1,793 citations

Journal ArticleDOI
TL;DR: Li-S batteries have received everincreasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions as discussed by the authors.
Abstract: Rechargeable Li–S batteries have received ever-increasing attention recently due to their high theoretical specific energy density, which is 3 to 5 times higher than that of Li ion batteries based on intercalation reactions. Li–S batteries may represent a next-generation energy storage system, particularly for large scale applications. The obstacles to realize this high energy density mainly include high internal resistance, self-discharge and rapid capacity fading on cycling. These challenges can be met to a large degree by designing novel sulfur electrodes with “smart” nanostructures. This highlight provides an overview of major developments of positive electrodes based on this concept.

1,731 citations

Journal ArticleDOI
TL;DR: The goal of the present article is to provide a survey of electroactive polymers in view of potential applications in rechargeable batteries, and reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes.
Abstract: Electrochemical energy storage systems (batteries) have a tremendous role in technical applications In this review the authors examine the prospects of electroactive polymers in view of the properties required for such batteries Conducting organic polymers are considered here in the light of their rugged chemical environment: organic solvents, acids, and alkalis The goal of the present article is to provide, first of all in tabular form, a survey of electroactive polymers in view of potential applications in rechargeable batteries It reviews the preparative methods and the electrochemical performance of polymers as rechargeable battery electrodes The theoretical values of specific charge of the polymers are comparable to those of metal oxide electrodes, but are not as high as those of most of the metal electrodes normally used in batteries Therefore, it is an advantage in conventional battery designs to use the conducting polymer as a positive electrode material in combination with a negative electrode such as Li, Na, Mg, Zn, MeH{sub x}, etc 504 refs

1,481 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical structured sulfur−carbon (S/C) nanocomposite material was used as the high surface area cathode for rechargeable lithium batteries. But the results show that the cyclability and utilization of sulfur in the Li/S batteries have been significantly improved.
Abstract: We report herein a hierarchically structured sulfur−carbon (S/C) nanocomposite material as the high surface-area cathode for rechargeable lithium batteries. A porous carbon with a uniform distribution of mesopores of 7.3 nm has been synthesized through a soft-template synthesis method. The potassium hydroxide activation of this mesoporous carbon results in a bimodal porous carbon with added microporosity of less than 2 nm to the existing mesopores without deterioration of the integrity of the original mesoporous carbon. Elemental sulfur has been loaded to the micropores through a solution infiltration method. The resulted S/C composites with various loading level of sulfur have a high surface areas and large internal porosities. These materials have been tested as novel cathodes for Li/S batteries. The results show that the cyclability and the utilization of sulfur in the Li/S batteries have been significantly improved. The large internal porosity and surface area of the micromesoporous carbon is essentia...

831 citations