scispace - formally typeset
Journal ArticleDOI

Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter

Reads0
Chats0
TLDR
The gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst is identified and Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.
Abstract
Defects in iron absorption and utilization lead to iron deficiency and overload disorders. Adult mammals absorb iron through the duodenum, whereas embryos obtain iron through placental transport. Iron uptake from the intestinal lumen through the apical surface of polarized duodenal enterocytes is mediated by the divalent metal transporter, DMT1 (refs 1,2,3). A second transporter has been postulated to export iron across the basolateral surface to the circulation. Here we have used positional cloning to identify the gene responsible for the hypochromic anaemia of the zebrafish mutant weissherbst. The gene, ferroportin1, encodes a multiple-transmembrane domain protein, expressed in the yolk sac, that is a candidate for the elusive iron exporter. Zebrafish ferroportin1 is required for the transport of iron from maternally derived yolk stores to the circulation and functions as an iron exporter when expressed in Xenopus oocytes. Human Ferroportin1 is found at the basal surface of placental syncytiotrophoblasts, suggesting that it also transports iron from mother to embryo. Mammalian Ferroportin1 is expressed at the basolateral surface of duodenal enterocytes and could export cellular iron into the circulation. We propose that Ferroportin1 function may be perturbed in mammalian disorders of iron deficiency or overload.

read more

Citations
More filters
Journal ArticleDOI

Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization

TL;DR: It is reported that hepcidin bound to ferroportin in tissue culture cells, leading to decreased export of cellular iron and the posttranslational regulation of ferroports by hePCidin may complete a homeostatic loop.
Journal ArticleDOI

Animal models of human disease: zebrafish swim into view.

TL;DR: This Review surveys the achievements and potential of zebrafish for modelling human diseases and for drug discovery and development.
Journal ArticleDOI

Metals in Neurobiology: Probing Their Chemistry and Biology with Molecular Imaging

TL;DR: The brain is a singular organ of unique biological complexity that serves as the command center for cognitive and motor function and has requirements for the highest concentrations of metal ions in the body and the highest per-weight consumption of body oxygen.
Journal ArticleDOI

Balancing Acts: Molecular Control of Mammalian Iron Metabolism

TL;DR: The study of iron biology has provided novel insights into gene regulation and unveiled remarkable links to the immune system.
Journal ArticleDOI

Two to Tango: Regulation of Mammalian Iron Metabolism

TL;DR: How the two distinct systems of iron metabolism function and how they "tango" together in a coordinated manner are described are described.
References
More filters
Journal ArticleDOI

AFLP: a new technique for DNA fingerprinting.

TL;DR: The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity that allows the specific co-amplification of high numbers of restriction fragments.
Journal ArticleDOI

Stages of embryonic development of the zebrafish.

TL;DR: A series of stages for development of the embryo of the zebrafish, Danio (Brachydanio) rerio is described, providing for flexibility and continued evolution of the staging series as the authors learn more about development in this species.
Journal ArticleDOI

On the Nature of Allosteric Transitions: A Plausible Model

TL;DR: "It is certain that all bodies whatsoever, though they have no sense, yet they have perception, and whether the body be alterant or alterec, evermore a perception precedeth operation; for else all bodies would be like one to another."
Journal ArticleDOI

Cloning and characterization of a mammalian proton-coupled metal-ion transporter

TL;DR: A new metal-ion transporter in the rat, DCT1, which has an unusually broad substrate range that includes Fe2+, Zn2+, Mn2+, Co2+, Cd2+, Cu2+, Ni2+ and Pb2+.
Journal ArticleDOI

Disorders of iron metabolism.

TL;DR: Iron has the capacity to accept and donate electrons readily, interconverting between ferric (Fe2+) and ferrous (Fe3+) forms, which makes it a useful component of cytochromes, oxygen-binding molecules, and many enzymes.
Related Papers (5)