scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Positioning metal-organic framework nanoparticles within the context of drug delivery - A comparison with mesoporous silica nanoparticles and dendrimers.

TL;DR: The benefits of using MOF nanoparticles compared to dendrimers and mesoporous silica nanoparticles in order to understand the challenges that must still be overcome and to develop the next generation of drug delivery systems.
About: This article is published in Biomaterials.The article was published on 2017-04-01. It has received 206 citations till now. The article focuses on the topics: Mesoporous silica & Drug delivery.
Citations
More filters
Journal ArticleDOI
TL;DR: Various strategies based on the Fenton reaction have been employed to enhance hydroxyl radical generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview.
Abstract: Tailored to the specific tumour microenvironment, which involves acidity and the overproduction of hydrogen peroxide, advanced nanotechnology has been introduced to generate the hydroxyl radical ( OH) primarily for tumour chemodynamic therapy (CDT) through the Fenton and Fenton-like reactions Numerous studies have investigated the enhancement of CDT efficiency, primarily the increase in the amount of OH generated Notably, various strategies based on the Fenton reaction have been employed to enhance OH generation, including nanomaterials selection, modulation of the reaction environment, and external energy fields stimulation, which are discussed systematically in this Minireview Furthermore, the potential challenges and the methods used to facilitate CDT effectiveness are also presented to support this cutting-edge research area

1,190 citations

Journal ArticleDOI
TL;DR: A panorama of the latest advancements in the rational design and development of semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts for visible-light-induced hydrogen evolution reaction (HER) is presented in this paper.
Abstract: Semiconductor polymeric graphitic carbon nitride (g-C3N4) photocatalysts have attracted dramatically growing attention in the field of the visible-light-induced hydrogen evolution reaction (HER) because of their facile synthesis, easy functionalization, attractive electronic band structure, high physicochemical stability and photocatalytic activity. This review article presents a panorama of the latest advancements in the rational design and development of g-C3N4 and g-C3N4-based composite photocatalysts for HER application. Concretely, the review starts with the development history, synthetic strategy, electronic structure and physicochemical characteristics of g-C3N4 materials, followed by the rational design and engineering of various nanostructured g-C3N4 (e.g. thinner, highly crystalline, doped, and porous g-C3N4) photocatalysts for HER application. Then a series of highly efficient g-C3N4 (e.g., metal/g-C3N4, semiconductor/g-C3N4, metal organic framework/g-C3N4, carbon/g-C3N4, conducting polymer/g-C3N4, sensitizer/g-C3N4) composite photocatalysts are exemplified. Lastly, this review provides a comprehensive summary and outlook on the major challenges, opportunities, and inspiring perspectives for future research in this hot area on the basis of pioneering works. It is believed that the emerging g-C3N4-based photocatalysts will act as the “holy grail” for highly efficient photocatalytic HER under visible-light irradiation.

717 citations

Journal ArticleDOI
TL;DR: Recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted.
Abstract: Due to their well-defined 3D architectures, permanent porosity, and diverse chemical functionalities, metal-organic framework nanoparticles (MOF NPs) are an emerging class of modular nanomaterials. Herein, recent developments in the synthesis and postsynthetic surface functionalization of MOF NPs that strengthen the fundamental understanding of how such structures form and grow are highlighted; the internal structure and external surface properties of these novel nanomaterials are highlighted as well. These fundamental advances have resulted in MOF NPs being used as components in chemical sensors, biological probes, and membrane separation materials, as well as building blocks for colloidal crystal engineering.

485 citations

Journal ArticleDOI
TL;DR: A global view of the studies that evaluated nano particles of metal‐organic frameworks' biomedical applications at the preclinical stage, when in vivo tests are described either for pharmacological applications or for toxicity evaluation is provided.
Abstract: In the past few years, numerous studies have demonstrated the great potential of nano particles of metal-organic frameworks (nanoMOFs) at the preclinical level for biomedical applications. Many of them were reported very recently based on their bioactive composition, anticancer application, or from a general drug delivery/theranostic perspective. In this review, the authors aim at providing a global view of the studies that evaluated MOFs' biomedical applications at the preclinical stage, when in vivo tests are described either for pharmacological applications or for toxicity evaluation. The authors first describe the current surface engineering approaches that are crucial to understand the in vivo behavior of the nanoMOFs. Finally, after a detailed and comprehensive analysis of the in vivo studies reported with MOFs so far, and considering the general evolution of the drug delivery science, the authors suggest new directions for future research in the use of nanoMOFs for biomedical applications.

451 citations

References
More filters
Journal ArticleDOI
30 Aug 2013-Science
TL;DR: Metal-organic frameworks are porous materials that have potential for applications such as gas storage and separation, as well as catalysis, and methods are being developed for making nanocrystals and supercrystals of MOFs for their incorporation into devices.
Abstract: Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.

10,934 citations

Journal ArticleDOI
TL;DR: The aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers, and the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli.
Abstract: The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.

9,661 citations

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.
Abstract: Nanomaterials are engineered structures with at least one dimension of 100 nanometers or less. These materials are increasingly being used for commercial purposes such as fillers, opacifiers, catalysts, semiconductors, cosmetics, microelectronics, and drug carriers. Materials in this size range may approach the length scale at which some specific physical or chemical interactions with their environment can occur. As a result, their properties differ substantially from those bulk materials of the same composition, allowing them to perform exceptional feats of conductivity, reactivity, and optical sensitivity. Possible undesirable results of these capabilities are harmful interactions with biological systems and the environment, with the potential to generate toxicity. The establishment of principles and test procedures to ensure safe manufacture and use of nanomaterials in the marketplace is urgently required and achievable.

8,323 citations


"Positioning metal-organic framework..." refers background in this paper

  • ...[16,41,42] To successfully achieve nanoparticle-based drug del ivery that could reach pharmaceuticals market, the critical considerations of a biodegradable and nontoxic nano c rrier, made of nontoxic components that are easil y cleared from the body after NP decomposition, must still be taken into account.[43,44] Last but not least, the NP-based...

    [...]

Journal ArticleDOI
12 Jun 2003-Nature
TL;DR: This work has shown that highly porous frameworks held together by strong metal–oxygen–carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.
Abstract: The long-standing challenge of designing and constructing new crystalline solid-state materials from molecular building blocks is just beginning to be addressed with success. A conceptual approach that requires the use of secondary building units to direct the assembly of ordered frameworks epitomizes this process: we call this approach reticular synthesis. This chemistry has yielded materials designed to have predetermined structures, compositions and properties. In particular, highly porous frameworks held together by strong metal-oxygen-carbon bonds and with exceptionally large surface area and capacity for gas storage have been prepared and their pore metrics systematically varied and functionalized.

8,013 citations


"Positioning metal-organic framework..." refers background in this paper

  • ...[49] Therefore, the pore size and shape of MOFs is defined by the geometry of both the inorgan ic clusters and the organic linkers as well as by t heir connectivity.[50] The large diversity of inorganic and organic components has allowed for the synthesi s of an abundant number of different MOFs....

    [...]

  • ...[75] This systematic approach, consisting in varying the organic linker l ngth of MOF structure without changing its underl ying topology, is called isoreticular expansion (Figure 3).[50] The challenge of the implementation of this chemical approach to build MOF NPs relies on the demanding s ynthesis of extended organic linkers together with solubility issues, making MOF NPs syntheses expensive and thus decreasing their industrial applicability and econ omic feasibility....

    [...]

Related Papers (5)