scispace - formally typeset
Open accessJournal ArticleDOI: 10.1016/J.CELREP.2021.108798

Post-transcriptional regulation of antiviral gene expression by N6-methyladenosine.

02 Mar 2021-Cell Reports (Cell Press)-Vol. 34, Iss: 9, pp 108798-108798
Abstract: Type I interferons (IFNs) induce hundreds of IFN-stimulated genes (ISGs) in response to viral infection. Induction of these ISGs must be regulated for an efficient and controlled antiviral response, but post-transcriptional controls of these genes have not been well defined. Here, we identify a role for the RNA base modification N6-methyladenosine (m6A) in the regulation of ISGs. Using ribosome profiling and quantitative mass spectrometry, coupled with m6A-immunoprecipitation and sequencing, we identify a subset of ISGs, including IFITM1, whose translation is enhanced by m6A and the m6A methyltransferase proteins METTL3 and METTL14. We further determine that the m6A reader YTHDF1 increases the expression of IFITM1 in an m6A-binding-dependent manner. Importantly, we find that the m6A methyltransferase complex promotes the antiviral activity of type I IFN. Thus, these studies identify m6A as having a role in post-transcriptional control of ISG translation during the type I IFN response for antiviral restriction.

... read more


10 results found

Open accessJournal ArticleDOI: 10.1093/GBE/EVAB106
Abstract: The nucleotide composition, dinucleotide composition, and codon usage of many viruses differs from their hosts. These differences arise because viruses are subject to unique mutation and selection pressures that do not apply to host genomes; however, the molecular mechanisms that underlie these evolutionary forces are unclear. Here, we analysed the patterns of codon usage in 1,520 vertebrate-infecting viruses, focusing on parameters known to be under selection and associated with gene regulation. We find that GC content, dinucleotide content, and splicing and m6A modification-related sequence motifs are associated with the type of genetic material (DNA or RNA), strandedness, and replication compartment of viruses. In an experimental follow-up, we find that the effects of GC content on gene expression depend on whether the genetic material is delivered to the cell as DNA or mRNA, whether it is transcribed by endogenous or exogenous RNA polymerase, and whether transcription takes place in the nucleus or cytoplasm. Our results suggest that viral codon usage cannot be explained by a simple adaptation to the codon usage of the host - instead, it reflects the combination of multiple selective and mutational pressures, including the need for efficient transcription, export, and immune evasion.

... read more

Topics: Codon usage bias (67%), Viral evolution (60%), RNA polymerase (56%) ... read more

5 Citations

Journal ArticleDOI: 10.1126/SCIIMMUNOL.ABD1287
Rami Bechara1, Nilesh Amatya1, Rachel D. Bailey1, Yang Li1  +12 moreInstitutions (3)
02 Jul 2021-Science immunology
Abstract: Excessive cytokine activity underlies many autoimmune conditions, particularly through the interleukin-17 (IL-17) and tumor necrosis factor-α (TNFα) signaling axis. Both cytokines activate nuclear factor κB, but appropriate induction of downstream effector genes requires coordinated activation of other transcription factors, notably, CCAAT/enhancer binding proteins (C/EBPs). Here, we demonstrate the unexpected involvement of a posttranscriptional "epitranscriptomic" mRNA modification [N6-methyladenosine (m6A)] in regulating C/EBPβ and C/EBPδ in response to IL-17A, as well as IL-17F and TNFα. Prompted by the observation that C/EBPβ/δ-encoding transcripts contain m6A consensus sites, we show that Cebpd and Cebpb mRNAs are subject to m6A modification. Induction of C/EBPs is enhanced by an m6A methylase "writer" and suppressed by a demethylase "eraser." The only m6A "reader" found to be involved in this pathway was IGF2BP2 (IMP2), and IMP2 occupancy of Cebpd and Cebpb mRNA was enhanced by m6A modification. IMP2 facilitated IL-17-mediated Cebpd mRNA stabilization and promoted translation of C/EBPβ/δ in response to IL-17A, IL-17F, and TNFα. RNA sequencing revealed transcriptome-wide IL-17-induced transcripts that are IMP2 influenced, and RNA immunoprecipitation sequencing identified the subset of mRNAs that are directly occupied by IMP2, which included Cebpb and Cebpd Lipocalin-2 (Lcn2), a hallmark of autoimmune kidney injury, was strongly dependent on IL-17, IMP2, and C/EBPβ/δ. Imp2-/- mice were resistant to autoantibody-induced glomerulonephritis (AGN), showing impaired renal expression of C/EBPs and Lcn2 Moreover, IMP2 deletion initiated only after AGN onset ameliorated disease. Thus, posttranscriptional regulation of C/EBPs through m6A/IMP2 represents a previously unidentified paradigm of cytokine-driven autoimmune inflammation.

... read more

Topics: CEBPB (58%), MRNA modification (56%), MRNA stabilization (55%) ... read more

4 Citations

Open accessJournal ArticleDOI: 10.1371/JOURNAL.PBIO.3001292
Hideki Terajima1, Hideki Terajima2, Mijia Lu3, Linda Zhang2  +6 moreInstitutions (4)
29 Jul 2021-PLOS Biology
Abstract: Among over 150 distinct RNA modifications, N6-methyladenosine (m6A) and adenosine-to-inosine (A-to-I) RNA editing represent 2 of the most studied modifications on mammalian mRNAs. Although both modifications occur on adenosine residues, knowledge on potential functional crosstalk between these 2 modifications is still limited. Here, we show that the m6A modification promotes expression levels of the ADAR1, which encodes an A-to-I RNA editing enzyme, in response to interferon (IFN) stimulation. We reveal that YTH N6-methyladenosine RNA binding protein 1 (YTHDF1) mediates up-regulation of ADAR1; YTHDF1 is a reader protein that can preferentially bind m6A-modified transcripts and promote translation. Knockdown of YTHDF1 reduces the overall levels of IFN-induced A-to-I RNA editing, which consequently activates dsRNA-sensing pathway and increases expression of various IFN-stimulated genes. Physiologically, YTHDF1 deficiency inhibits virus replication in cells through regulating IFN responses. The A-to-I RNA editing activity of ADAR1 plays important roles in the YTHDF1-dependent IFN responses. Therefore, we uncover that m6A and YTHDF1 affect innate immune responses through modulating the ADAR1-mediated A-to-I RNA editing.

... read more

Topics: RNA editing (72%), RNA (63%), RNA-binding protein (60%) ... read more

2 Citations

Journal ArticleDOI: 10.1111/IMR.13019
Abstract: From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.

... read more

Topics: Pattern recognition receptor (61%), Innate immune system (59%), Immune system (54%) ... read more

1 Citations

Posted ContentDOI: 10.1101/2021.10.26.465929
28 Oct 2021-bioRxiv
Abstract: The RNA binding protein RIG-I is a key initiator of the antiviral innate immune response. The signaling that mediates the antiviral response downstream of RIG-I is transduced through the adaptor protein MAVS and results in the induction of type I and III interferons (IFN). This signal transduction occurs at endoplasmic reticulum (ER)-mitochondrial contact sites, to which RIG-I and other signaling proteins are recruited following their activation. RIG-I signaling is highly regulated to prevent aberrant activation of this pathway and dysregulated induction of IFN. Previously, we identified UFL1, the E3 ligase of the ubiquitin-like modifier conjugation system called ufmylation, UFL1, as one of the proteins recruited to membranes at ER-mitochondrial contact sites in response to RIG-I activation. Here, we show that UFL1, as well as the process of ufmylation, promote IFN induction in response to RIG-I activation. We find that following RNA virus infection, UFL1 is recruited to the membrane targeting protein 14-3-3e, and that this complex is then recruited to activated RIG-I to promote downstream innate immune signaling. Importantly, loss of ufmylation prevents 14-3-3e interaction with RIG-I, which abrogates the interaction of RIG-I with MAVS and thus downstream signal transduction that induces IFN. Our results define ufmylation as an integral regulatory component of the RIG-I signaling pathway and as a post-translational control for IFN induction.

... read more

Topics: RIG-I (56%), Signal transducing adaptor protein (56%), Signal transduction (54%) ... read more


86 results found

Open accessJournal ArticleDOI: 10.18637/JSS.V067.I01
Abstract: Maximum likelihood or restricted maximum likelihood (REML) estimates of the parameters in linear mixed-effects models can be determined using the lmer function in the lme4 package for R. As for most model-fitting functions in R, the model is described in an lmer call by a formula, in this case including both fixed- and random-effects terms. The formula and data together determine a numerical representation of the model from which the profiled deviance or the profiled REML criterion can be evaluated as a function of some of the model parameters. The appropriate criterion is optimized, using one of the constrained optimization functions in R, to provide the parameter estimates. We describe the structure of the model, the steps in evaluating the profiled deviance or REML criterion, and the structure of classes or types that represents such a model. Sufficient detail is included to allow specialization of these structures by users who wish to write functions to fit specialized linear mixed models, such as models incorporating pedigrees or smoothing splines, that are not easily expressible in the formula language used by lmer.

... read more

37,650 Citations

Open accessJournal ArticleDOI: 10.1186/S13059-014-0550-8
05 Dec 2014-Genome Biology
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at .

... read more

Topics: MRNA Sequencing (54%), Integrator complex (51%), Count data (50%) ... read more

29,675 Citations

Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTU170
Anthony Bolger1, Marc Lohse1, Bjoern Usadel1Institutions (1)
01 Aug 2014-Bioinformatics
Abstract: Motivation: Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. Results: The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. Availability and implementation: Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at Contact: ed.nehcaa-htwr.1oib@ledasu Supplementary information: Supplementary data are available at Bioinformatics online.

... read more

26,464 Citations

Open accessJournal ArticleDOI: 10.1093/BIOINFORMATICS/BTS635
01 Jan 2013-Bioinformatics
Abstract: Motivation Accurate alignment of high-throughput RNA-seq data is a challenging and yet unsolved problem because of the non-contiguous transcript structure, relatively short read lengths and constantly increasing throughput of the sequencing technologies. Currently available RNA-seq aligners suffer from high mapping error rates, low mapping speed, read length limitation and mapping biases. Results To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision. In addition to unbiased de novo detection of canonical junctions, STAR can discover non-canonical splices and chimeric (fusion) transcripts, and is also capable of mapping full-length RNA sequences. Using Roche 454 sequencing of reverse transcription polymerase chain reaction amplicons, we experimentally validated 1960 novel intergenic splice junctions with an 80-90% success rate, corroborating the high precision of the STAR mapping strategy. Availability and implementation STAR is implemented as a standalone C++ code. STAR is free open source software distributed under GPLv3 license and can be downloaded from

... read more

Topics: MRNA Sequencing (57%)

20,172 Citations

Journal ArticleDOI: 10.14806/EJ.17.1.200
Marcel Martin1Institutions (1)
02 May 2011-EMBnet.journal
Abstract: When small RNA is sequenced on current sequencing machines, the resulting reads are usually longer than the RNA and therefore contain parts of the 3' adapter. That adapter must be found and removed error-tolerantly from each read before read mapping. Previous solutions are either hard to use or do not offer required features, in particular support for color space data. As an easy to use alternative, we developed the command-line tool cutadapt, which supports 454, Illumina and SOLiD (color space) data, offers two adapter trimming algorithms, and has other useful features. Cutadapt, including its MIT-licensed source code, is available for download at

... read more

Topics: Adapter (genetics) (50%)

13,576 Citations

No. of citations received by the Paper in previous years