scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Potential alternatives to edible oils for biodiesel production - A review of current work

01 Feb 2011-Energy Conversion and Management (ENERGY CONVERSION AND MANAGEMENT)-Vol. 52, Iss: 2, pp 1479-1492
TL;DR: The use of non-edible plant oils when compared with edible oils is very significant in developing countries because of the tremendous demand for edible oils as food, and they are far too expensive to be used as fuel at present as mentioned in this paper.
About: This article is published in Energy Conversion and Management.The article was published on 2011-02-01. It has received 567 citations till now. The article focuses on the topics: Biodiesel production & Biodiesel.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a detailed review has been conducted to highlight different related aspects to the biodiesel industry, including, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodies, the economical viability and finally the future of the future biodiesel.
Abstract: As the fossil fuels are depleting day by day, there is a need to find out an alternative fuel to fulfill the energy demand of the world. Biodiesel is one of the best available resources that have come to the forefront recently. In this paper, a detailed review has been conducted to highlight different related aspects to biodiesel industry. These aspects include, biodiesel feedstocks, extraction and production methods, properties and qualities of biodiesel, problems and potential solutions of using vegetable oil, advantages and disadvantages of biodiesel, the economical viability and finally the future of biodiesel. The literature reviewed was selective and critical. Highly rated journals in scientific indexes were the preferred choice, although other non-indexed publications, such as Scientific Research and Essays or some internal reports from highly reputed organizations such as International Energy Agency (IEA), Energy Information Administration (EIA) and British Petroleum (BP) have also been cited. Based on the overview presented, it is clear that the search for beneficial biodiesel sources should focus on feedstocks that do not compete with food crops, do not lead to land-clearing and provide greenhouse-gas reductions. These feedstocks include non-edible oils such as Jatropha curcas and Calophyllum inophyllum , and more recently microalgae and genetically engineered plants such as poplar and switchgrass have emerged to be very promising feedstocks for biodiesel production. It has been found that feedstock alone represents more than 75% of the overall biodiesel production cost. Therefore, selecting the best feedstock is vital to ensure low production cost. It has also been found that the continuity in transesterification process is another choice to minimize the production cost. Biodiesel is currently not economically feasible, and more research and technological development are needed. Thus supporting policies are important to promote biodiesel research and make their prices competitive with other conventional sources of energy. Currently, biodiesel can be more effective if used as a complement to other energy sources.

1,496 citations


Cites background from "Potential alternatives to edible oi..."

  • ...It has lower volatilities that cause the formation of deposits in engines due to incomplete combustion characteristics [2,29,47,53,58,79,93,118,131,134,180]...

    [...]

  • ...Due to the high oxygen content in biodiesel, advance in fuel injection and timing and earlier start of combustion, biodiesel produces relatively higher NOx levels than diesel in the range of 10–14% during combustion [27,53,93,99,108,111,113,119,135,149,182]...

    [...]

  • ...Biodiesel is safe for transportation, handling, distribution, utilization and storage due to its higher flash point (above 100–170 ◦C) than petroleum diesel (60–80 ◦C) [2,27,29,53,122,123,149,154,179,181]...

    [...]

  • ...It is one of the most important parameters, which is conidered during the selection procedure of methyl esters for using s biodiesel [29,53,99,108,116,126]....

    [...]

  • ...Table 15 highlights the problems, probale causes and the potential solutions [8,43,53,58,80,81,88,89,99]....

    [...]

Journal ArticleDOI
TL;DR: The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source as mentioned in this paper, however, edible oils’ feedstock costs are far expensive to be used as fuel.
Abstract: World energy demand is expected to increase due to the expanding urbanization, better living standards and increasing population. At a time when society is becoming increasingly aware of the declining reserves of fossil fuels beside the environmental concerns, it has become apparent that biodiesel is destined to make a substantial contribution to the future energy demands of the domestic and industrial economies. There are different potential feedstocks for biodiesel production. Non-edible vegetable oils which are known as the second generation feedstocks can be considered as promising substitutions for traditional edible food crops for the production of biodiesel. The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source. Moreover, edible oils’ feedstock costs are far expensive to be used as fuel. Therefore, production of biodiesel from non-edible oils is an effective way to overcome all the associated problems with edible oils. However, the potential of converting non-edible oil into biodiesel must be well examined. This is because physical and chemical properties of biodiesel produced from any feedstock must comply with the limits of ASTM and DIN EN specifications for biodiesel fuels. This paper introduces non-edible vegetable oils to be used as biodiesel feedstocks. Several aspects related to these feedstocks have been reviewed from various recent publications. These aspects include overview of non-edible oil resources, advantages of non-edible oils, problems in exploitation of non-edible oils, fatty acid composition profiles (FAC) of various non-edible oils, oil extraction techniques, technologies of biodiesel production from non-edible oils, biodiesel standards and characterization, properties and characteristic of non-edible biodiesel and engine performance and emission production. As a conclusion, it has been found that there is a huge chance to produce biodiesel from non-edible oil sources and therefore it can boost the future production of biodiesel.

1,017 citations


Cites background from "Potential alternatives to edible oi..."

  • ...Rice bran oil is an underutilized non-edible vegetable oil, which is available in large quantities in rice cultivating countries, and very little research has been done to utilize this oil as a replacement for mineral diesel [7,41,82]....

    [...]

  • ...The kernel constitutes about 70% of the seed and contains 50% oil [7,26,41]....

    [...]

  • ...The oil content in rice bran varies from 12% to 25% [41,51,81]....

    [...]

Journal ArticleDOI
TL;DR: This review shows that while emphasis is on the use of micro alga oil sources, the viability of the economics of the process is still in doubt, and a proposal for the exploitation of heterogeneous catalysts from natural sources to optimize biodiesel production is proposed.
Abstract: This article reviews various technologies that have been used for biodiesel production till date, with a view to comparing commercial suitability of these methods on the basis of available feedstocks and associated challenges. This review shows that while emphasis is on the use of micro alga oil sources, the viability of the economics of the process is still in doubt. Homogenously catalyzed processes are the conventional technologies. However, their large-scale applicability is compromised due to their characteristic challenges. Batch processes and continuous processes are used for industrial purposes with typical capacity of 7.26-7.5 Gg y(-1) and 8-125 Gg y(-1) respectively, and heterogeneous catalysis may be sustainable for the continuous processes. Heterogeneous catalysts from renewable sources may be both environmentally and economically viable. Reactive distillation has the major advantage of combining the reaction and separation stages in a single unit, thereby significantly reducing capital costs and increasing opportunities for heat integration. This paper is a comprehensive overview of current technologies and appropriate options for scale-up development, providing the basis for a proposal for the exploitation of heterogeneous catalysts from natural sources to optimize biodiesel production. (C) 2013 Elsevier Ltd. All rights reserved.

558 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced some species of non-edible vegetables whose oils are potential sources of biodiesel, such as Pongamia pinnata (karanja), Calophyllum inophyllus (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica, Linum usitatissimum (Linseed)

481 citations

Journal ArticleDOI
TL;DR: In this paper, the authors provided the substantial information on biodiesel to the researchers, engineers and policy makers, and concluded that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.
Abstract: Due to the finite stock of fossil fuels and its negative impact on the environment, many countries across the world are now leaning toward renewable sources energies like solar energy, wind energy, biofuel, hydropower, geothermal and ocean energy to ensure energy for the countries development security. Biodiesel is one kind of biofuel that is renewable, biodegradable and has similar properties of fossil diesel fuel. The aim of this paper is to provide the substantial information on biodiesel to the researchers, engineers and policy makers. To achieve the goal, this paper summarizes the information on biofuel development, feedstocks around the world, oil extraction technic, biodiesel production processes. Furthermore, this paper will also discuss the advantages of biodiesel compared to fossil fuel. Finally, the combustion behavior of biodiesel in an internal combustion engine is discussed and it will help the researchers and policy maker and manufacturer. To determine the future and goal of automotive technology the study found that, feedstock selection for biodiesel production is very important as it associates 75% production cost. Moreover, the test of fuel properties is very important before using in the engine which depends on the type of feedstocks, origin country, and production process. Most of the researchers reported that the use of biodiesel in diesel engine reduces engine power slightly but reduces the harmful emission significantly. Finally, the study concludes that biodiesel has the potential to be used as a diesel fuel substitute in diesel engines to solve the energy and environment crisis.

467 citations

References
More filters
Journal ArticleDOI
Yusuf Chisti1
TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.

9,030 citations

Journal ArticleDOI
TL;DR: The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds).
Abstract: Sustainable production of renewable energy is being hotly debated globally since it is increasingly understood that first generation biofuels, primarily produced from food crops and mostly oil seeds are limited in their ability to achieve targets for biofuel production, climate change mitigation and economic growth. These concerns have increased the interest in developing second generation biofuels produced from non-food feedstocks such as microalgae, which potentially offer greatest opportunities in the longer term. This paper reviews the current status of microalgae use for biodiesel production, including their cultivation, harvesting, and processing. The microalgae species most used for biodiesel production are presented and their main advantages described in comparison with other available biodiesel feedstocks. The various aspects associated with the design of microalgae production units are described, giving an overview of the current state of development of algae cultivation systems (photo-bioreactors and open ponds). Other potential applications and products from microalgae are also presented such as for biological sequestration of CO 2 , wastewater treatment, in human health, as food additive, and for aquaculture.

5,158 citations


"Potential alternatives to edible oi..." refers background in this paper

  • ...Microalgae have much higher growth rates and productivity when compared to conventional forestry, agricultural crops, and other aquatic plants, requiring much less land area than other biodiesel feedstocks of agricultural origin, up to 49 or 132 times less when compared to rapeseed or soybean crops, for a 30% (w/w) of oil content in algae biomass [130]....

    [...]

Journal ArticleDOI
TL;DR: A review of second generation biodiesel production systems using microalgae can be found in this paper, where the main advantages of second-generation microalgal systems are that they: (1) have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) can couple CO2-neutral fuel production with CO2 sequestration: (
Abstract: The use of fossil fuels is now widely accepted as unsustainable due to depleting resources and the accumulation of greenhouse gases in the environment that have already exceeded the “dangerously high” threshold of 450 ppm CO2-e. To achieve environmental and economic sustainability, fuel production processes are required that are not only renewable, but also capable of sequestering atmospheric CO2. Currently, nearly all renewable energy sources (e.g. hydroelectric, solar, wind, tidal, geothermal) target the electricity market, while fuels make up a much larger share of the global energy demand (∼66%). Biofuels are therefore rapidly being developed. Second generation microalgal systems have the advantage that they can produce a wide range of feedstocks for the production of biodiesel, bioethanol, biomethane and biohydrogen. Biodiesel is currently produced from oil synthesized by conventional fuel crops that harvest the sun’s energy and store it as chemical energy. This presents a route for renewable and carbon-neutral fuel production. However, current supplies from oil crops and animal fats account for only approximately 0.3% of the current demand for transport fuels. Increasing biofuel production on arable land could have severe consequences for global food supply. In contrast, producing biodiesel from algae is widely regarded as one of the most efficient ways of generating biofuels and also appears to represent the only current renewable source of oil that could meet the global demand for transport fuels. The main advantages of second generation microalgal systems are that they: (1) Have a higher photon conversion efficiency (as evidenced by increased biomass yields per hectare): (2) Can be harvested batch-wise nearly all-year-round, providing a reliable and continuous supply of oil: (3) Can utilize salt and waste water streams, thereby greatly reducing freshwater use: (4) Can couple CO2-neutral fuel production with CO2 sequestration: (5) Produce non-toxic and highly biodegradable biofuels. Current limitations exist mainly in the harvesting process and in the supply of CO2 for high efficiency production. This review provides a brief overview of second generation biodiesel production systems using microalgae.

2,254 citations


"Potential alternatives to edible oi..." refers background in this paper

  • ...Open ponds are a very efficient and cost-effective method of cultivating algae, but they become contaminated with unwanted species very quickly [134]....

    [...]

Journal ArticleDOI
TL;DR: Biodiesel (fatty acid methyl esters), which is derived from triglycerides by transesterification with methanol, has attracted considerable attention during the past decade as a renewable, biodegradable, and nontoxic fuel.

2,185 citations

Journal ArticleDOI
TL;DR: In this paper, structural features that influence the physical and fuel properties of a fatty ester molecule are chain length, degree of unsaturation, and branching of the chain, as well as the structural features of the fatty acid and the alcohol moieties.

2,145 citations


"Potential alternatives to edible oi..." refers background in this paper

  • ...Some biodiesel standards are ASTM D6751 (ASTM = American Society for Testing and Materials) and the European standard EN 14214, which was developed from previously existing standards in individual European countries [15,16]....

    [...]