scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Power-aware source routing protocol for mobile ad hoc networks

TL;DR: In this article, a source-initiated (on-demand) routing protocol for mobile ad hoc networks that increases the network lifetime is proposed, where all nodes start with a finite amount of battery capacity and that the energy dissipation per bit of data and control packet transmission or reception is known.
Abstract: Ad hoc wireless networks are power constrained since nodes operate with limited battery energy. To maximize the lifetime of these networks (defined by the condition that a fixed percentage of the nodes in the network "die out" due to lack of energy), network-related transactions through each mobile node must be controlled such that the power dissipation rates of all nodes are nearly the same. Assuming that all nodes start with a finite amount of battery capacity and that the energy dissipation per bit of data and control packet transmission or reception is known, this paper presents a new source-initiated (on-demand) routing protocol for mobile ad hoc networks that increases the network lifetime. Simulation results show that the proposed power-aware source routing protocol has a higher performance than other source initiated routing protocols in terms of the network lifetime.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A shortest cost path routing algorithm is proposed which uses link costs that reflect both the communication energy consumption rates and the residual energy levels at the two end nodes and is amenable to distributed implementation.
Abstract: A routing problem in static wireless ad hoc networks is considered as it arises in a rapidly deployed, sensor based, monitoring system known as the wireless sensor network. Information obtained by the monitoring nodes needs to be routed to a set of designated gateway nodes. In these networks, every node is capable of sensing, data processing, and communication, and operates on its limited amount of battery energy consumed mostly in transmission and reception at its radio transceiver. If we assume that the transmitter power level can be adjusted to use the minimum energy required to reach the intended next hop receiver then the energy consumption rate per unit information transmission depends on the choice of the next hop node, i.e., the routing decision. We formulate the routing problem as a linear programming problem, where the objective is to maximize the network lifetime, which is equivalent to the time until the network partition due to battery outage. Two different models are considered for the information-generation processes. One assumes constant rates and the other assumes an arbitrary process. A shortest cost path routing algorithm is proposed which uses link costs that reflect both the communication energy consumption rates and the residual energy levels at the two end nodes. The algorithm is amenable to distributed implementation. Simulation results with both information-generation process models show that the proposed algorithm can achieve network lifetime that is very close to the optimal network lifetime obtained by solving the linear programming problem.

1,375 citations

Journal ArticleDOI
TL;DR: By sacrificing modest computation resources to save communication bandwidth and reduce transmission latency, fog computing can significantly improve the performance of cloud computing.
Abstract: Mobile users typically have high demand on localized and location-based information services. To always retrieve the localized data from the remote cloud, however, tends to be inefficient, which motivates fog computing. The fog computing, also known as edge computing, extends cloud computing by deploying localized computing facilities at the premise of users, which prestores cloud data and distributes to mobile users with fast-rate local connections. As such, fog computing introduces an intermediate fog layer between mobile users and cloud, and complements cloud computing toward low-latency high-rate services to mobile users. In this fundamental framework, it is important to study the interplay and cooperation between the edge (fog) and the core (cloud). In this paper, the tradeoff between power consumption and transmission delay in the fog-cloud computing system is investigated. We formulate a workload allocation problem which suggests the optimal workload allocations between fog and cloud toward the minimal power consumption with the constrained service delay. The problem is then tackled using an approximate approach by decomposing the primal problem into three subproblems of corresponding subsystems, which can be, respectively, solved. Finally, based on simulations and numerical results, we show that by sacrificing modest computation resources to save communication bandwidth and reduce transmission latency, fog computing can significantly improve the performance of cloud computing.

681 citations

Journal ArticleDOI
TL;DR: It is shown that the problem of routing messages in a wireless sensor network so as to maximize network lifetime is NP-hard and an online heuristic is developed, which performs two shortest path computations to route each message, which results in greater lifetime.
Abstract: We show that the problem of routing messages in a wireless sensor network so as to maximize network lifetime is NP-hard. In our model, the online model, each message has to be routed without knowledge of future route requests. We also develop an online heuristic to maximize network lifetime. Our heuristic, which performs two shortest path computations to route each message, is superior to previously published heuristics for lifetime maximization - our heuristic results in greater lifetime and its performance is less sensitive to the selection of heuristic parameters. Additionally, our heuristic is superior on the capacity metric

171 citations

Journal ArticleDOI
TL;DR: Methods to mitigate resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes' battery power, are discussed, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires during the packet forwarding phase.
Abstract: Ad hoc low-power wireless networks are an exciting research direction in sensing and pervasive computing. Prior security work in this area has focused primarily on denial of communication at the routing or medium access control levels. This paper explores resource depletion attacks at the routing protocol layer, which permanently disable networks by quickly draining nodes' battery power. These "Vampire” attacks are not specific to any specific protocol, but rather rely on the properties of many popular classes of routing protocols. We find that all examined protocols are susceptible to Vampire attacks, which are devastating, difficult to detect, and are easy to carry out using as few as one malicious insider sending only protocol-compliant messages. In the worst case, a single Vampire can increase network-wide energy usage by a factor of O(N), where N in the number of network nodes. We discuss methods to mitigate these types of attacks, including a new proof-of-concept protocol that provably bounds the damage caused by Vampires during the packet forwarding phase.

170 citations

Proceedings ArticleDOI
20 Mar 2003
TL;DR: This paper presents a lifetime prediction routing protocol for MANETs that maximizes the network lifetime by finding routing solutions that minimize the variance of the remaining energies of the nodes in the network.
Abstract: One of the main design constraints in mobile ad hoc networks (MANETs) is that they are power constrained. Hence, every effort is to be channeled towards reducing power. More precisely, network lifetime is a key design metric in MANETs. Since every node has to perform the functions of a router, if some nodes die early due to lack of energy, it will not be possible for other nodes to communicate with each other. Hence, the network will get disconnected and the network lifetime will be adversely affected. This paper presents a lifetime prediction routing protocol for MANETs that maximizes the network lifetime by finding routing solutions that minimize the variance of the remaining energies of the nodes in the network. Although this scheme introduces some additional traffic, simulations show that it improves the network lifetime by about 20-30%.

169 citations

References
More filters
01 Jul 2003
TL;DR: A logging instrument contains a pulsed neutron source and a pair of radiation detectors spaced along the length of the instrument to provide an indication of formation porosity which is substantially independent of the formation salinity.
Abstract: The Ad hoc On-Demand Distance Vector (AODV) routing protocol is intended for use by mobile nodes in an ad hoc network. It offers quick adaptation to dynamic link conditions, low processing and memory overhead, low network utilization, and determines unicast routes to destinations within the ad hoc network. It uses destination sequence numbers to ensure loop freedom at all times (even in the face of anomalous delivery of routing control messages), avoiding problems (such as "counting to infinity") associated with classical distance vector protocols.

11,490 citations

Proceedings ArticleDOI
01 Oct 1994
TL;DR: The modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile hosts.
Abstract: An ad-hoc network is the cooperative engagement of a collection of Mobile Hosts without the required intervention of any centralized Access Point. In this paper we present an innovative design for the operation of such ad-hoc networks. The basic idea of the design is to operate each Mobile Host as a specialized router, which periodically advertises its view of the interconnection topology with other Mobile Hosts within the network. This amounts to a new sort of routing protocol. We have investigated modifications to the basic Bellman-Ford routing mechanisms, as specified by RIP [5], to make it suitable for a dynamic and self-starting network mechanism as is required by users wishing to utilize ad hoc networks. Our modifications address some of the previous objections to the use of Bellman-Ford, related to the poor looping properties of such algorithms in the face of broken links and the resulting time dependent nature of the interconnection topology describing the links between the Mobile Hosts. Finally, we describe the ways in which the basic network-layer routing can be modified to provide MAC-layer support for ad-hoc networks.

6,877 citations

Book
01 Jan 2008
TL;DR: In this article, the authors present a series of technical papers about ad hoc networks from a variety of laboratories and experts, and explain the latest thinking on how mobile devices can best discover, identify, and communicate with other devices in the vicinity.
Abstract: Ad hoc networks are to computing devices what Yahoo Personals are to single people: both help individuals communicate productively with strangers while maintaining security. Under the rules of ad hoc networking--which continue to evolve--your mobile phone can, when placed in proximity to your handheld address book, establish a little network on its own and enable data sharing between the two devices. In Ad Hoc Networking, Charles Perkins has compiled a series of technical papers about networking on the fly from a variety of laboratories and experts. The collection explains the latest thinking on how mobile devices can best discover, identify, and communicate with other devices in the vicinity. In this treatment, ad hoc networking covers a broad swath of situations. An ad hoc network might consist of several home-computing devices, plus a notebook computer that must exist on home and office networks without extra administrative work. Such a network might also need to exist when the people and equipment in normally unrelated military units need to work together in combat. Though the papers in this book are much more descriptive of protocols and algorithms than of their implementations, they aim individually and collectively at commercialization and popularization of mobile devices that make use of ad hoc networking. You'll enjoy this book if you're involved in researching or implementing ad hoc networking capabilities for mobile devices. --David Wall Topics covered: The state-of-the-art in protocols and algorithms to be used in ad hoc networks of mobile devices that move in and out of proximity to one another, to fixed resources like printers, and to Internet connectivity. Routing with Destination-Sequenced Distance Vector (DSDV), Dynamic Source Routing (DSR), Ad hoc On-Demand Distance Vector (AODV), and other resource-discovery and routing protocols; the effects of ad hoc networking on bandwidth consumption; and battery life.

2,022 citations

Proceedings ArticleDOI
25 Oct 1998
TL;DR: In this article, the authors present a case for using new power-aware metn.cs for determining routes in wireless ad hoc networks and show that using these new metrics ensures that the mean time to node failure is increased si~cantly.
Abstract: b this paper we present a case for using new power-aware metn.cs for determining routes in wireless ad hoc networks. We present five ~erent metriw based on battery power consumption at nodw. We show that using th=e metrics in a shortest-cost routing algorithm reduces the cost/packet of routing packets by 5-30% over shortwt-hop routing (this cost reduction is on top of a 40-70% reduction in energy consumption obtained by using PAMAS, our MAC layer prtocol). Furthermore, using these new metrics ensures that the mean time to node failure is increased si~cantly. An interesting property of using shortest-cost routing is that packet delays do not increase. Fintiy, we note that our new metrim can be used in most tradition routing protocols for ad hoc networks.

1,885 citations