scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems

01 Feb 2018-IEEE Wireless Communications Letters (IEEE)-Vol. 7, Iss: 1, pp 114-117
TL;DR: The proposed deep learning-based approach to handle wireless OFDM channels in an end-to-end manner is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise exists.
Abstract: This letter presents our initial results in deep learning for channel estimation and signal detection in orthogonal frequency-division multiplexing (OFDM) systems. In this letter, we exploit deep learning to handle wireless OFDM channels in an end-to-end manner. Different from existing OFDM receivers that first estimate channel state information (CSI) explicitly and then detect/recover the transmitted symbols using the estimated CSI, the proposed deep learning-based approach estimates CSI implicitly and recovers the transmitted symbols directly. To address channel distortion, a deep learning model is first trained offline using the data generated from simulation based on channel statistics and then used for recovering the online transmitted data directly. From our simulation results, the deep learning based approach can address channel distortion and detect the transmitted symbols with performance comparable to the minimum mean-square error estimator. Furthermore, the deep learning-based approach is more robust than conventional methods when fewer training pilots are used, the cyclic prefix is omitted, and nonlinear clipping noise exists. In summary, deep learning is a promising tool for channel estimation and signal detection in wireless communications with complicated channel distortion and interference.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking, and presents applications of DRL for traffic routing, resource sharing, and data collection.
Abstract: This paper presents a comprehensive literature review on applications of deep reinforcement learning (DRL) in communications and networking. Modern networks, e.g., Internet of Things (IoT) and unmanned aerial vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, DRL, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of DRL from fundamental concepts to advanced models. Then, we review DRL approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks, such as 5G and beyond. Furthermore, we present applications of DRL for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying DRL.

1,153 citations


Additional excerpts

  • ...The authors in [184] propose to use the deep learning for the symbol detection in OFDM systems....

    [...]

Journal ArticleDOI
TL;DR: This paper bridges the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas, and provides an encyclopedic review of mobile and Wireless networking research based on deep learning, which is categorize by different domains.
Abstract: The rapid uptake of mobile devices and the rising popularity of mobile applications and services pose unprecedented demands on mobile and wireless networking infrastructure. Upcoming 5G systems are evolving to support exploding mobile traffic volumes, real-time extraction of fine-grained analytics, and agile management of network resources, so as to maximize user experience. Fulfilling these tasks is challenging, as mobile environments are increasingly complex, heterogeneous, and evolving. One potential solution is to resort to advanced machine learning techniques, in order to help manage the rise in data volumes and algorithm-driven applications. The recent success of deep learning underpins new and powerful tools that tackle problems in this space. In this paper, we bridge the gap between deep learning and mobile and wireless networking research, by presenting a comprehensive survey of the crossovers between the two areas. We first briefly introduce essential background and state-of-the-art in deep learning techniques with potential applications to networking. We then discuss several techniques and platforms that facilitate the efficient deployment of deep learning onto mobile systems. Subsequently, we provide an encyclopedic review of mobile and wireless networking research based on deep learning, which we categorize by different domains. Drawing from our experience, we discuss how to tailor deep learning to mobile environments. We complete this survey by pinpointing current challenges and open future directions for research.

975 citations


Cites background or methods from "Power of Deep Learning for Channel ..."

  • ...[364] Channel estimation and signal detection in OFDM systsms....

    [...]

  • ...A similar idea is implemented in [364], where Ye et al....

    [...]

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Journal ArticleDOI
TL;DR: Significant technological breakthroughs to achieve connectivity goals within 6G include: a network operating at the THz band with much wider spectrum resources, intelligent communication environments that enable a wireless propagation environment with active signal transmission and reception, and pervasive artificial intelligence.
Abstract: 6G and beyond will fulfill the requirements of a fully connected world and provide ubiquitous wireless connectivity for all. Transformative solutions are expected to drive the surge for accommodating a rapidly growing number of intelligent devices and services. Major technological breakthroughs to achieve connectivity goals within 6G include: (i) a network operating at the THz band with much wider spectrum resources, (ii) intelligent communication environments that enable a wireless propagation environment with active signal transmission and reception, (iii) pervasive artificial intelligence, (iv) large-scale network automation, (v) an all-spectrum reconfigurable front-end for dynamic spectrum access, (vi) ambient backscatter communications for energy savings, (vii) the Internet of Space Things enabled by CubeSats and UAVs, and (viii) cell-free massive MIMO communication networks. In this roadmap paper, use cases for these enabling techniques as well as recent advancements on related topics are highlighted, and open problems with possible solutions are discussed, followed by a development timeline outlining the worldwide efforts in the realization of 6G. Going beyond 6G, promising early-stage technologies such as the Internet of NanoThings, the Internet of BioNanoThings, and quantum communications, which are expected to have a far-reaching impact on wireless communications, have also been discussed at length in this paper.

595 citations


Cites background from "Power of Deep Learning for Channel ..."

  • ...For example, in channel estimation and symbol detection, deep learning approaches reported in [78], [79] have shown that the proposed deep learning-based symbol detection algorithms can provide robust and accurate results with reduced complexity....

    [...]

Journal ArticleDOI
TL;DR: The learned denoising-based approximate message passing (LDAMP) network is exploited and significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains.
Abstract: Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave massive multiple-input and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a large number of training data. Furthermore, we provide an analytical framework on the asymptotic performance of the channel estimator. Based on our analysis and simulation results, the LDAMP neural network significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains.

587 citations


Cites background from "Power of Deep Learning for Channel ..."

  • ...Deep learning has been recently applied to solve compressive image recovery [5] and wireless communications [7], [8]....

    [...]

References
More filters
Proceedings Article
03 Dec 2012
TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Abstract: We trained a large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes. On the test data, we achieved top-1 and top-5 error rates of 37.5% and 17.0% which is considerably better than the previous state-of-the-art. The neural network, which has 60 million parameters and 650,000 neurons, consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax. To make training faster, we used non-saturating neurons and a very efficient GPU implementation of the convolution operation. To reduce overriding in the fully-connected layers we employed a recently-developed regularization method called "dropout" that proved to be very effective. We also entered a variant of this model in the ILSVRC-2012 competition and achieved a winning top-5 test error rate of 15.3%, compared to 26.2% achieved by the second-best entry.

73,978 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


"Power of Deep Learning for Channel ..." refers background in this paper

  • ...A comprehensive introduction to deep learning and machine learning can be found in [1]....

    [...]

Posted Content
TL;DR: Qualitatively, the proposed RNN Encoder‐Decoder model learns a semantically and syntactically meaningful representation of linguistic phrases.
Abstract: In this paper, we propose a novel neural network model called RNN Encoder-Decoder that consists of two recurrent neural networks (RNN). One RNN encodes a sequence of symbols into a fixed-length vector representation, and the other decodes the representation into another sequence of symbols. The encoder and decoder of the proposed model are jointly trained to maximize the conditional probability of a target sequence given a source sequence. The performance of a statistical machine translation system is empirically found to improve by using the conditional probabilities of phrase pairs computed by the RNN Encoder-Decoder as an additional feature in the existing log-linear model. Qualitatively, we show that the proposed model learns a semantically and syntactically meaningful representation of linguistic phrases.

2,510 citations

Journal ArticleDOI
TL;DR: This work investigates, through extensive computer simulations, the effects of clipping and filtering on the performance of OFDM, including the power spectral density, the crest factor, and the bit-error rate.
Abstract: Orthogonal frequency division multiplexing (OFDM) is an attractive technique for wireless communication applications. However, an OFDM signal has a large peak-to-mean envelope power ratio, which can result in significant distortion when passed through a nonlinear device, such as a transmitter power amplifier. We investigate, through extensive computer simulations, the effects of clipping and filtering on the performance of OFDM, including the power spectral density, the crest factor, and the bit-error rate. Our results show that clipping and filtering is a promising technique for the transmission of OFDM signals using realistic linear amplifiers.

1,341 citations


"Power of Deep Learning for Channel ..." refers background or methods in this paper

  • ...As indicated in [10], a notable drawback of OFDM is the high peak-to-average power ratio (PAPR)....

    [...]

  • ...To reduce PAPR, the clipping and filtering approach serves as a simple and effective approach [10]....

    [...]

Book ChapterDOI
30 Sep 2009
TL;DR: In this article, the authors present an introduction to channel models and channel models, and a discussion of channel model usage and models and models' models' parameters. But this chapter contains sections titled: Introduction Modelling Considerations Channel Modelling Approach Channel Models and Parameters Channel Model Usage Conclusion
Abstract: This chapter contains sections titled: Introduction Modelling Considerations Channel‐Modelling Approach Channel Models and Parameters Channel Model Usage Conclusion Acknowledgements References

1,159 citations


"Power of Deep Learning for Channel ..." refers methods in this paper

  • ...The wireless channel follows the wireless world initiative for new radio model (WINNER II) [9], where the carrier frequency is 2....

    [...]