scispace - formally typeset
Search or ask a question
Book

Power System Control and Stability

30 Apr 1980-
TL;DR: In this paper, the authors present a mathematical model of the Synchronous Machine and the effect of speed and acceleration on the stability of a three-phase power system with constant impedance load.
Abstract: Preface.Part I: Introduction.Chapter 1: Power System Stability.Chapter 2: The Elementary Mathematical Model.Chapter 3: System Response to Small Disturbances.Part II: The Electromagnetic Torque.Chapter 4: The Synchronous Machine.Chapter 5: The Simulation of Synchronous Machines.Chapter 6: Linear Models of the Synchronous Machine.Chapter 7: Excitation Systems.Chapter 8: Effect of Excitation on Stability.Chapter 9: Multimachine Systems with Constant Impedance Loads.Part III: The Mechanical Torque Power System Control and Stability.Chapter 10: Speed Governing.Chapter 11: Steam Turbine Prime Movers.Chapter 12: Hydraulic Turbine Prime Movers.Chapter 13: Combustion Turbine and Combined-Cycle Power Plants.Appendix A: Trigonometric Identities for Three-Phase Systems.Appendix B: Some Computer Methods for Solving Differential Equations.Appendix C: Normalization.Appendix D: Typical System Data.Appendix E: Excitation Control System Definitions.Appendix F: Control System Components.Appendix G: Pressure Control Systems.Appendix H: The Governor Equations.Appendix I: Wave Equations for a Hydraulic Conduit.Appendix J: Hydraulic Servomotors.Index.
Citations
More filters
Book
31 Dec 1999
TL;DR: In this paper, the authors present a modal analysis of power systems and their properties, including the nature of power system oscillations and stabilizers, as well as their properties.
Abstract: 1. Introduction. 2. The Nature of Power System Oscillations. 3. Modal Analysis of Power Systems. 4. Modal Analysis for Control. 5. Power System Structure and Oscillations. 6. Generator Controls. 7. Power System Stabilizers. 8. Power System Stabilizers - Problems and Solutions. 9. Robust Control. 10. Damping by Electronic Power System Devices. A1. Model Data Formats and Block Diagrams. A2. Equal Eigenvalues. Index.

1,322 citations

Book
03 Mar 2009
TL;DR: In this article, the authors provide a comprehensive coverage of robust power system frequency control understanding, simulation and design, and develop an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.
Abstract: Frequency control as a major function of automatic generation control is one of the important control problems in electric power system design and operation, and is becoming more significant today due to the increasing size, changing structure, emerging new uncertainties, environmental constraints, and the complexity of power systems. Robust Power System Frequency Control uses the recent development of linear robust control theory to provide practical, systematic, fast, and flexible algorithms for the tuning of power system load-frequency controllers. The physical constraints and important challenges related to the frequency regulation issue in a deregulated environment are emphasized, and most results are supplemented by real-time simulations. The developed control strategies attempt to bridge the existing gap between the advantages of robust/optimal control and traditional power system frequency control design. The material summarizes the long term research outcomes and contributions of the author’s experience with power system frequency regulation. It provides a thorough understanding of the basic principles of power system frequency behavior over a wide range of operating conditions. It uses simple frequency response models, control structures and mathematical algorithms to adapt modern robust control theorems with frequency control issues as well as conceptual explanations. The engineering aspects of frequency regulation have been considered, and practical methods for computer analysis and design are also discussed. Robust Power System Frequency Control provides a comprehensive coverage of frequency control understanding, simulation and design. The material develops an appropriate intuition relative to the robust load frequency regulation problem in real-world power systems, rather than to describe sophisticated mathematical analytical methods.

1,018 citations

Journal ArticleDOI
TL;DR: In this paper, the authors propose a contract path option to address the problem of loop flow and congestion in electric power transmission systems, which provides an internally consistent framework for assigning long-term capacity rights to a complicated electric transmission network.
Abstract: A contract network extends the concept of a contract path to address the problem of loop flow and congestion in electric power transmission systems. A contract network option provides an internally consistent framework for assigning long-term capacity rights to a complicated electric transmission network. The contract network respects the special conditions induced by Kirchoff's Laws; accommodates thermal, voltage, and contingency constraints on transmission capacity; and can be adopted without disturbing existing methods for achieving an economic power dispatch subject to these constraints. By design, a contract network would maintain short-run efficiency through optimal spot-price determination of transmission prices. Through payment of congestion rentals, the contract network makes a long-term capacity-right holder indifferent between delivery of the power or receipt of payments in a settlement system. to]Everybody talks about the weather, but nobody does anything about it.

1,002 citations

Journal ArticleDOI
TL;DR: In this paper, a novel evolutionary algorithm-based approach to optimal design of multimachine power system stabilizers (PSSs) is proposed, which employs the particle swarm optimization (PSO) technique to search for optimal settings of PSS parameters.
Abstract: In this paper, a novel evolutionary algorithm-based approach to optimal design of multimachine power system stabilizers (PSSs) is proposed. The proposed approach employs the particle swarm optimization (PSO) technique to search for optimal settings of PSS parameters. Two elgenvalue-based objective functions to enhance system damping of electromechanical modes are considered. The robustness of the proposed approach to the initial guess is demonstrated. The performance of the proposed PSO-based PSS (PSOPSS) under different disturbances, loading conditions, and system configurations is tested and examined for different multimachine power systems. Eigenvalue analysis and nonlinear simulation results show the effectiveness of the proposed PSOPSSs to damp out the local as well as the interarea modes of oscillations and work effectively over a wide range of loading conditions and system configurations. In addition, the potential and superiority of the proposed approach over the conventional approaches are demonstrated.

684 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented small-signal stability analyzed results of an autonomous hybrid renewable energy power generation/energy storage system connected to isolated loads using time-domain simulations.
Abstract: Small-signal stability analyzed results of an autonomous hybrid renewable energy power generation/energy storage system connected to isolated loads using time-domain simulations is presented in this paper. The companion paper presents frequency-domain analyzed results of the same hybrid system. The proposed renewable energy power generation subsystems include three wind turbine generators (WTGs), a diesel engine generator, two fuel cells (FCs), and a photovoltaic system (PV) while the energy storage subsystems consist of a battery energy storage system and a flywheel energy storage system. An aqua electrolyzer absorbs a part of generated energy from PV or WTGs to generate available hydrogen for FCs. A time-domain approach based on three mathematical models for three studied cases under various operating points and disturbance conditions is performed. It can be concluded from the simulation results that the proposed hybrid power generation/energy storage system feeding isolated loads can be properly operated to achieve system power-frequency balance condition.

672 citations