scispace - formally typeset
Search or ask a question
Proceedings Article

Practical Variational Inference for Neural Networks

12 Dec 2011-Vol. 24, pp 2348-2356
TL;DR: This paper introduces an easy-to-implement stochastic variational method (or equivalently, minimum description length loss function) that can be applied to most neural networks and revisits several common regularisers from a variational perspective.
Abstract: Variational methods have been previously explored as a tractable approximation to Bayesian inference for neural networks. However the approaches proposed so far have only been applicable to a few simple network architectures. This paper introduces an easy-to-implement stochastic variational method (or equivalently, minimum description length loss function) that can be applied to most neural networks. Along the way it revisits several common regularisers from a variational perspective. It also provides a simple pruning heuristic that can both drastically reduce the number of network weights and lead to improved generalisation. Experimental results are provided for a hierarchical multidimensional recurrent neural network applied to the TIMIT speech corpus.

Content maybe subject to copyright    Report

Citations
More filters
Proceedings Article
01 Jan 2014
TL;DR: A stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case is introduced.
Abstract: How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributions is two-fold. First, we show that a reparameterization of the variational lower bound yields a lower bound estimator that can be straightforwardly optimized using standard stochastic gradient methods. Second, we show that for i.i.d. datasets with continuous latent variables per datapoint, posterior inference can be made especially efficient by fitting an approximate inference model (also called a recognition model) to the intractable posterior using the proposed lower bound estimator. Theoretical advantages are reflected in experimental results.

20,769 citations

Journal ArticleDOI
TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.

14,635 citations


Cites background from "Practical Variational Inference for..."

  • ...MDL-based stochastic variationalmethods (Graves, 2011) are also related to FMS....

    [...]

  • ...Compare Graves and Jaitly (2014), Graves and Schmidhuber (2005), Graves et al. (2009), Graves et al. (2013) and Schmidhuber, Ciresan, Meier, Masci, and Graves (2011) (Section 5.22)....

    [...]

Posted Content
TL;DR: These advanced recurrent units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU), are found to be comparable to LSTM.
Abstract: In this paper we compare different types of recurrent units in recurrent neural networks (RNNs). Especially, we focus on more sophisticated units that implement a gating mechanism, such as a long short-term memory (LSTM) unit and a recently proposed gated recurrent unit (GRU). We evaluate these recurrent units on the tasks of polyphonic music modeling and speech signal modeling. Our experiments revealed that these advanced recurrent units are indeed better than more traditional recurrent units such as tanh units. Also, we found GRU to be comparable to LSTM.

9,478 citations


Cites methods from "Practical Variational Inference for..."

  • ...We train each model with RMSProp [see, e.g., Hinton, 2012] and use weight noise with standard deviation fixed to 0.075 [Graves, 2011]....

    [...]

  • ...6 Table 2: The average negative log-probabilities of the training and test sets. We train each model with RMSProp [see, e.g., Hinton, 2012] and use weight noise with standard deviation fixed to 0:075 [Graves, 2011]. At every update, we rescale the norm of the gradient to 1, if it is larger than 1 [Pascanu et al., 2013] to prevent exploding gradients. We select a learning rate (scalar multiplier in RMSProp) to ...

    [...]

Proceedings ArticleDOI
26 May 2013
TL;DR: This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs.
Abstract: Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates deep recurrent neural networks, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.

7,316 citations


Cites background from "Practical Variational Inference for..."

  • ...tends to ‘simplify’ neural networks, in the sense of reducing the amount of information required to transmit the parameters [23, 24], which improves generalisation....

    [...]

Posted Content
TL;DR: In this paper, deep recurrent neural networks (RNNs) are used to combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs.
Abstract: Recurrent neural networks (RNNs) are a powerful model for sequential data. End-to-end training methods such as Connectionist Temporal Classification make it possible to train RNNs for sequence labelling problems where the input-output alignment is unknown. The combination of these methods with the Long Short-term Memory RNN architecture has proved particularly fruitful, delivering state-of-the-art results in cursive handwriting recognition. However RNN performance in speech recognition has so far been disappointing, with better results returned by deep feedforward networks. This paper investigates \emph{deep recurrent neural networks}, which combine the multiple levels of representation that have proved so effective in deep networks with the flexible use of long range context that empowers RNNs. When trained end-to-end with suitable regularisation, we find that deep Long Short-term Memory RNNs achieve a test set error of 17.7% on the TIMIT phoneme recognition benchmark, which to our knowledge is the best recorded score.

5,310 citations

References
More filters
Journal ArticleDOI
TL;DR: A novel, efficient, gradient based method called long short-term memory (LSTM) is introduced, which can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units.
Abstract: Learning to store information over extended time intervals by recurrent backpropagation takes a very long time, mostly because of insufficient, decaying error backflow. We briefly review Hochreiter's (1991) analysis of this problem, then address it by introducing a novel, efficient, gradient based method called long short-term memory (LSTM). Truncating the gradient where this does not do harm, LSTM can learn to bridge minimal time lags in excess of 1000 discrete-time steps by enforcing constant error flow through constant error carousels within special units. Multiplicative gate units learn to open and close access to the constant error flow. LSTM is local in space and time; its computational complexity per time step and weight is O. 1. Our experiments with artificial data involve local, distributed, real-valued, and noisy pattern representations. In comparisons with real-time recurrent learning, back propagation through time, recurrent cascade correlation, Elman nets, and neural sequence chunking, LSTM leads to many more successful runs, and learns much faster. LSTM also solves complex, artificial long-time-lag tasks that have never been solved by previous recurrent network algorithms.

72,897 citations


"Practical Variational Inference for..." refers background in this paper

  • ...Hierarchical multidimensional recurrent neural networks containing Long Short-Term Memory [11] hidden layers and a CTC output layer [8] have proven effective for offline handwriting recognition [9]....

    [...]

Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Journal ArticleDOI
01 Jan 1988-Nature
TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Abstract: We describe a new learning procedure, back-propagation, for networks of neurone-like units. The procedure repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector. As a result of the weight adjustments, internal ‘hidden’ units which are not part of the input or output come to represent important features of the task domain, and the regularities in the task are captured by the interactions of these units. The ability to create useful new features distinguishes back-propagation from earlier, simpler methods such as the perceptron-convergence procedure1.

23,814 citations


"Practical Variational Inference for..." refers methods in this paper

  • ...We assume that the partial derivatives of L (w,D) with respect to the network weights can be efficiently calculated (using, for example, backpropagation or backpropagation through time [22])....

    [...]

Journal ArticleDOI
Jorma Rissanen1
TL;DR: The number of digits it takes to write down an observed sequence x1,...,xN of a time series depends on the model with its parameters that one assumes to have generated the observed data.

6,254 citations


"Practical Variational Inference for..." refers methods in this paper

  • ...Variational inference can be reformulated as the optimisation of a Minimum Description length (MDL; [21]) loss function; indeed it was in this form that variational inference was first considered for neural networks....

    [...]

Proceedings ArticleDOI
25 Jun 2006
TL;DR: This paper presents a novel method for training RNNs to label unsegmented sequences directly, thereby solving both problems of sequence learning and post-processing.
Abstract: Many real-world sequence learning tasks require the prediction of sequences of labels from noisy, unsegmented input data. In speech recognition, for example, an acoustic signal is transcribed into words or sub-word units. Recurrent neural networks (RNNs) are powerful sequence learners that would seem well suited to such tasks. However, because they require pre-segmented training data, and post-processing to transform their outputs into label sequences, their applicability has so far been limited. This paper presents a novel method for training RNNs to label unsegmented sequences directly, thereby solving both problems. An experiment on the TIMIT speech corpus demonstrates its advantages over both a baseline HMM and a hybrid HMM-RNN.

5,188 citations


"Practical Variational Inference for..." refers background or methods in this paper

  • ...Prefix search CTC decoding [8] was used to transcribe the test set, with probability threshold 0....

    [...]

  • ...Hierarchical multidimensional recurrent neural networks containing Long Short-Term Memory [11] hidden layers and a CTC output layer [8] have proven effective for offline handwriting recognition [9]....

    [...]