scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Precipitation of the δ-Ni 3 Nb phase in two nickel base superalloys

TL;DR: In this article, the precipitation of the metastable δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys and the morphology and distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and the δ phases has been determined.
Abstract: The precipitation of the equilibrium δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys—INCONEL 718 and INCONEL* 625—both of which are hardenable by the precipitation of the metastableγ″-Ni3Nb phase. The morphology and the distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and theδ phases has been determined. The nucleation of theδ phase at stacking faults within pre-existing δ" precipitates has been discussed.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the microstructure evolution in Inconel 625 (IN625) manufactured using the additive manufacturing (AM) technique of laser powder-bed fusion is evaluated.
Abstract: The ability to use common computational thermodynamic and kinetic tools to study the microstructure evolution in Inconel 625 (IN625) manufactured using the additive manufacturing (AM) technique of laser powder-bed fusion is evaluated. Solidification simulations indicate that laser melting and re-melting during printing produce highly segregated interdendritic regions. Precipitation simulations for different degrees of segregation show that the larger the segregation, i.e., the richer the interdendritic regions are in Nb and Mo, the faster the δ-phase (Ni3Nb) precipitation. This is in accordance with the accelerated δ precipitation observed experimentally during post-build heat treatments of AM IN625 compared to wrought IN625. The δ-phase may be undesirable since it can lead to detrimental effects on the mechanical properties. The results are presented in the form of a TTT diagram and agreement between the simulated diagram and the experimental TTT diagram demonstrate how these computational tools can be used to guide and optimize post-build treatments of AM materials.

64 citations

Journal ArticleDOI
TL;DR: In this article, quantitative crystallographic and microstructural analyses of carbide phases are performed on wrought samples, samples fabricated via additive manufacturing (AM), and samples that underwent hot isostatic pressing (HIP) after AM of alloy Inconel 718 (IN718).
Abstract: In this work, quantitative crystallographic and microstructural analyses of γ, γ′, γ″, δ, and MC carbide phases are performed on wrought samples, samples fabricated via additive manufacturing (AM), and samples that underwent hot isostatic pressing (HIP) after AM of alloy Inconel 718 (IN718). In doing so, an advanced neutron diffraction-based procedure is developed facilitating the determination of volume fractions of every detectable phase in the alloy. To supplement the diffraction procedure, precipitate sizes are measured by scanning electron microscopy. Moreover, semi-quantitative elemental analyses are performed by energy dispersive spectroscopy. Finally, image thresholding is carried out on micrographs of samples that underwent cathodic dissolution to create secondary electron contrast between phases to verify the phase fractions determined from the neutron diffraction datasets. The study reveals a significantly higher volume fraction of δ phase and a significantly lower volume fraction of γ″ phase governing a higher strength of the AM material relative to the lower strength AM + HIP and wrought materials. Furthermore, γ′ and MC volume fractions are found similar in the materials despite the differences in MC morphology, elemental composition and distribution controlling the dispersion strengthening. These results are presented and discussed in this paper along with the procedure developed for determining volume fractions of all detectable phases present in the alloy.

62 citations

Journal ArticleDOI
TL;DR: In this article, the influence of different metallurgical conditions on the hydrogen embrittlement of the nickel-based superalloy 718 was evaluated by means of tensile tests and fracture analysis.

62 citations

Journal ArticleDOI
TL;DR: In this paper, Alloy 625 was found to have suffered severe hardening and loss of ductility in service in a petrochemical plant for 50 000 h at 500°C and the mechanical properties of the material and the reasons for the change in properties were described along with remedial heat treatments.

62 citations

Journal ArticleDOI
TL;DR: In this article, the effects of the amount of δ phase and of the grain size on the mechanical properties of an aged γ-matrix with γ′ and γ″ precipitates were investigated.
Abstract: The relationship between the δ phase content and the mechanical properties of Inconel 718 superalloy is still uncertain in the scientific literature. This study investigated the effects of the amount of δ phase and of the grain size on the mechanical properties of an aged γ-matrix with γ′ and γ″ precipitates. The material in as-received condition in the form of a forged bar was solution-treated in different conditions and aged according to UNS7718 standard. The microstructures were characterized using optical, scanning, and transmission electron microscopy. Hardness and tensile tests were also conducted. After solution treatment, γ′ and γ″ phases are dissolved and δ phase volume fraction is reduced to a minimum amount only observed by TEM, resulting in an increase of the grain size and a decrease of hardness and strength. After aging, the precipitation of γ′ and γ″ occurs and the amount of δ phase increases. The volume fraction of δ phase varying from 0.30 to 1.38% and the grain size varying from ASTM 7 to 5 do not have a significant effect on the tensile properties and hardness.

61 citations

References
More filters
Book
01 Jan 1958
TL;DR: The Handbook of Lattice spacings and structures of metals and alloys as discussed by the authors is a handbook of argumentative essay structure spacing and lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.
Abstract: For the best product experience, a Handbook of of argumentative essay structure spacing Lattice Spacings and Structures of Metals and Alloys ScienceDirect. Get this from a library! A handbook of lattice spacings and structures of metals and alloys. (W B Pearson) Acm metal). Vol. lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.c. Al—Ag solid zones in the alloys. W. B. Pearson, Handbook of Lattice Spacings. Structures of Metals and Alloys.

3,090 citations

Book
01 Jan 1962
TL;DR: Modern Physical Metallurgy as mentioned in this paper describes the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure and provides a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts.
Abstract: Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along with extensive new real-world examples and homework problems It offers renowned coverage of metals and alloys from one of the world's leading metallurgy educators It covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation It provides the most thorough coverage of characterization, mechanical properties, surface engineering and corrosion of any textbook in its field It includes new worked examples with real-world applications, case studies, extensive homework exercises, and a full online solutions manual and image bank

421 citations

Book ChapterDOI
TL;DR: In this article, a review of theoretical models applicable to concentrated solid solutions is presented, focusing on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations.
Abstract: Publisher Summary This chapter reviews current theoretical models applicable to concentrated solid solutions. It focuses on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations. The extended ranges of solubility are often found in metallic systems, and for this reason most examples selected will refer to metals and alloys, although the models presented are equally applied to off-stoichiometric compounds, metallic or inorganic, and to amorphous solids. The chapter provides description of the state of the order of the system through suitable averaging procedures. It discusses the internal energy of solutions, from both electronic and elastic standpoints. The chapter presents free energy models, such as generalized Bragg- Williams's model, Landau theory, and cluster variation method. These models are applied to the study of phase equilibrium.

308 citations

Journal ArticleDOI
TL;DR: In this article, a heat treatment for 706 alloy was developed which effectively optimizes the 1200°F stress-rupture properties of the alloy by precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.
Abstract: Evaluation of a commercial heat treatment for 706 alloy indicated that it resulted in relatively low 1200° F stress rupture ductility. It was determined that this was caused by a solution treatment which dissolved all of the age-hardening phases in the alloy and caused a coarse grain size and supersaturated matrix condition. Based upon extensive fine structure study of the 706 alloy as well as previous experience with 718 alloy and other Fe−Ni-base superalloys, a heat treatment is developed which effectively optimizes the 1200°F stress-rupture properties of the alloy. The key to best properties was found to be the precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.

44 citations