scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Precipitation of the δ-Ni 3 Nb phase in two nickel base superalloys

TL;DR: In this article, the precipitation of the metastable δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys and the morphology and distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and the δ phases has been determined.
Abstract: The precipitation of the equilibrium δ-Ni3Nb phase has been studied in two niobium bearing nickel base superalloys—INCONEL 718 and INCONEL* 625—both of which are hardenable by the precipitation of the metastableγ″-Ni3Nb phase. The morphology and the distribution of precipitates have been examined and the crystallographic orientation relationship between the austenite and theδ phases has been determined. The nucleation of theδ phase at stacking faults within pre-existing δ" precipitates has been discussed.
Citations
More filters
Journal ArticleDOI
08 Jan 2016-JOM
TL;DR: An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy as mentioned in this paper.
Abstract: An as-built and solutionized Ni-based superalloy built by additive manufacturing through a direct metal laser sintering technique is characterized to understand the microstructural differences as compared to the as-wrought alloy. Initially, each layer undergoes rapid solidification as it is melted by the laser; however, as the part is built, the underlying layers experience a variety of heating and cooling cycles that produce significant microsegregation of niobium which allows for the formation of the deleterious δ-phase. The as-built microstructure was characterized through Vickers hardness, optical microscopy, scanning and transmission electron microscopy, electron back-scattering diffraction, x-ray diffraction, and synchrotron x-ray microLaue diffraction. The isothermal formation and growth of the δ-phase were characterized using synchrotron-based in situ small angle and wide angle x-ray scattering experiments. These experimental results are compared with multicomponent diffusion simulations that predict the phase fraction and composition. The high residual stresses and unexpected formation of the δ-phase will require further annealing treatments to be designed so as to remove these deficiencies and obtain an optimized microstructure.

54 citations

Journal ArticleDOI
TL;DR: In this paper, the phase-transformation aspects of additively manufactured Alloy 718 during the additive manufacturing (AM) process and subsequent commonly used post-heat treatments are discussed.

54 citations

Journal ArticleDOI
H.Y. Li1, Y. H. Kong1, G.S. Chen, L.X. Xie, Shigen Zhu1, X. Sheng1 
TL;DR: In this article, the influence of different processing technologies and different heat treatments on the creep property of GH4169 superalloy has been investigated by measuring creep properties and microstructure observation.
Abstract: By the measurement of creep property and microstructure observation, the influence of different processing technologies and different heat treatments on the creep property of GH4169 superalloy has been investigated. It was found that the processing technologies of GH4169 superalloy can considerably affect the creep life. As compared to the hot continuous rolled alloy after standard heat treatment (abbreviated as HCR-ST), the radial forged alloy after the same treatment (abbreviated as RF-ST) precipitated more δ phase and led to shorter creep life. Besides, different heat treatments also resulted in different creep properties. Two specimens, both were taken from the hot continuous rolled alloy, were exposed to standard heat treatment (ST) and direct-aged treatment (DA), respectively. They are abbreviated as HCR-ST and HCR-DA. The results indicate that the HCR-DA specimen with clean grain boundaries and with no δ precipitates on them obtained much longer creep life. Without δ phase, the stress rupture life of the HCR-DA specimen is double of the RF-ST specimen whose amount of δ phase was largest.

53 citations

Journal ArticleDOI
TL;DR: In this paper, a multi-component and multi-phase field modelling approach was used to model microstructure evolution during laser metal powder directed energy deposition of Alloy 718 and subsequent heat treatments.
Abstract: A multi-component and multi-phase-field modelling approach, combined with transformation kinetics modelling, was used to model microstructure evolution during laser metal powder directed energy deposition of Alloy 718 and subsequent heat treatments. Experimental temperature measurements were utilised to predict microstructural evolution during successive addition of layers. Segregation of alloying elements as well as formation of Laves and δ phase was specifically modelled. The predicted elemental concentrations were then used in transformation kinetics to estimate changes in Continuous Cooling Transformation (CCT) and Time Temperature Transformation (TTT) diagrams for Alloy 718. Modelling results showed good agreement with experimentally observed phase evolution within the microstructure. The results indicate that the approach can be a valuable tool, both for improving process understanding and for process development including subsequent heat treatment.

51 citations

Journal ArticleDOI
TL;DR: Grain boundary precipitates in Inconel 718 and ATI 718 plus are important to control during hot working processes, since they can control the grain size as discussed by the authors, which can lead to excessive or insufficient amou...
Abstract: Grain boundary precipitates in Inconel 718 and ATI 718Plus are important to control during hot working processes, since they can control the grain size. Precipitating excessive or insufficient amou...

51 citations

References
More filters
Book
01 Jan 1958
TL;DR: The Handbook of Lattice spacings and structures of metals and alloys as discussed by the authors is a handbook of argumentative essay structure spacing and lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.
Abstract: For the best product experience, a Handbook of of argumentative essay structure spacing Lattice Spacings and Structures of Metals and Alloys ScienceDirect. Get this from a library! A handbook of lattice spacings and structures of metals and alloys. (W B Pearson) Acm metal). Vol. lattice plane model modified by the incorporation of thermodynamic functions appropriate to the f.c.c. Al—Ag solid zones in the alloys. W. B. Pearson, Handbook of Lattice Spacings. Structures of Metals and Alloys.

3,090 citations

Book
01 Jan 1962
TL;DR: Modern Physical Metallurgy as mentioned in this paper describes the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure and provides a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts.
Abstract: Modern Physical Metallurgy describes, in a very readable form, the fundamental principles of physical metallurgy and the basic techniques for assessing microstructure This book enables you to understand the properties and applications of metals and alloys at a deeper level than that provided in an introductory materials course The eighth edition of this classic text has been updated to provide a balanced coverage of properties, characterization, phase transformations, crystal structure, and corrosion not available in other texts, and includes updated illustrations along with extensive new real-world examples and homework problems It offers renowned coverage of metals and alloys from one of the world's leading metallurgy educators It covers new materials characterization techniques, including scanning tunneling microscopy (STM), atomic force microscopy (AFM), and nanoindentation It provides the most thorough coverage of characterization, mechanical properties, surface engineering and corrosion of any textbook in its field It includes new worked examples with real-world applications, case studies, extensive homework exercises, and a full online solutions manual and image bank

421 citations

Book ChapterDOI
TL;DR: In this article, a review of theoretical models applicable to concentrated solid solutions is presented, focusing on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations.
Abstract: Publisher Summary This chapter reviews current theoretical models applicable to concentrated solid solutions. It focuses on concentrated solutions because dilute ones can be considered as special cases and because the interesting effects of clustering and ordering are most apparent at high solute concentrations. The extended ranges of solubility are often found in metallic systems, and for this reason most examples selected will refer to metals and alloys, although the models presented are equally applied to off-stoichiometric compounds, metallic or inorganic, and to amorphous solids. The chapter provides description of the state of the order of the system through suitable averaging procedures. It discusses the internal energy of solutions, from both electronic and elastic standpoints. The chapter presents free energy models, such as generalized Bragg- Williams's model, Landau theory, and cluster variation method. These models are applied to the study of phase equilibrium.

308 citations

Journal ArticleDOI
TL;DR: In this article, a heat treatment for 706 alloy was developed which effectively optimizes the 1200°F stress-rupture properties of the alloy by precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.
Abstract: Evaluation of a commercial heat treatment for 706 alloy indicated that it resulted in relatively low 1200° F stress rupture ductility. It was determined that this was caused by a solution treatment which dissolved all of the age-hardening phases in the alloy and caused a coarse grain size and supersaturated matrix condition. Based upon extensive fine structure study of the 706 alloy as well as previous experience with 718 alloy and other Fe−Ni-base superalloys, a heat treatment is developed which effectively optimizes the 1200°F stress-rupture properties of the alloy. The key to best properties was found to be the precipitation of globular to plate-like Ni3Cb/Ni3Ti at the grain boundaries in conjunction with maintaining a fine as-forged grain structure.

44 citations